

Materials Characterization - Product Catalog

Multifields Technologies | Beijing

Content		Page	Content	Page
1	• Electrical Transport Measurement	1-20	2 - 4 Thermal Measurement	21-45
	1.1 General ETM Module Cover conventional electrical measurements such as resistance, Hall, etc.	2	2 Thermal Transport Measurement (TTM) Solution for thermal conductivity, Seebeck and resistance measurement 22	
	1.2 Single Axis Rotation ETM Rotating ETM probe allows for 360° sample rotation along a single axis	5	TTM Meter2.1Built-in thermocouple and thermometer monitoring module23for precise control of thermal gradients	
	 1.3 Dual Axis Rotation ETM Completely cover three-dimensional space sphere 1.4 ETM Accessories Essential options for electric transport measurement 		TTM Probe2.2The TTM probe with a 2-K in-situ vacuum chamber guarantees25no heat leakage caused by gas flow around sample.	
			TTM Accessories2.3TTM requires skilled operation and well-prepared experimental accessories for higher accuracy27	
	Matrix Switch System1.4.1 Arbitrarily switch the connection between the source meter and the device	15	TTM Software2.4Sequence-written interfaces can conduct the flexible measurement29	
	Breakout Box with ESD Protection1.4.2 Low leakage current guarantees a higher signal accuracy and better resolution.	ESD Protection 2.5 TTM - Application guarantees a higher signal accuracy and 17		
	Check Stage1.4.3Flexible desktop breakout box for device measurements anytime & anywhere	18	3 Heat Capacity Measurement (HCM) Solution for heat capacity measurement 32	
	1.4.4 ETM Accessories Options for Electric Transport Measurement	20	HCM Meter3.1Built-in heating and high-speed temperature monitoring channels, collecting temperature changes for real-time fitting33	

Content			Page	Content	Page
2 - 4		Thermal Measurement	21-45	5 Magnetic Measurement	46-58
	3.2	HCM Probe The TTM probe with a 2-K in-situ vacuum chamber guarantees no heat leakage caused by gas flow around sample.	34	VSM Measurement System 5.1 Complete system including probe, controller and measurement software for magnetic moment measurement	48
	3.3	HCM Accessories Specific heat capacity measurement is made easy with specialized mounting tools and accessories.	35	ACMS Measurement System	
	3.4	HCM Software Sequence-written interfaces can conduct the flexible measurement	36	5.2 Complete system including probe, controller and measurement software for AC susceptibility measurement	54
	3.5	HCM - Application	37	 Magnetic Measurement Accessories 5.3 Magnetic measurement is made easy with specialized mounting tools and accessories. 	58
	4 Thermal Expansion Measurement (ThE) Solution for thermal expansion and magnetostriction measurement		40	6 - 8 Magnetoelectric Measurement	59-68
	4.1	ThE Cell Highly precise capacitive position sensor monitors sample size variation	41	 Dielectric Measurement Compatible with dielectric, ferroelectric, pyroelectric, etc. measurements for bulks and films 	60
	4.2	ThE Accessories Dedicated room temperature installation & calibration tool	42		
	4.3	ThE Software Sequence-written interfaces can conduct the flexible measurement	43	 Ferroelectric Measurement Complete system including probe, analyzer and software for ferromagnetic measurement 	63
	4.4	ThE - Application	44	 Magnetoelectric Coupling Measurement Magneto-electric coupling coefficient measurement system with ultra-high sensitivity 	67

Conten	nt		Page	Con	tent			Page
9	— Dar	Ferromagnetic Resonance (FMR) Measurement	69-75		10.5	Sample Mount Flexible and convenient sample mounting for combined optical-electric measurements	85	
	9.1	FMR Workstation Integrating FMR, ST-FMR, Spin Pumping & ISHE into one system and exhibiting extraordinary sensitivity to measure magnetic film.	71		10.6	Nano Motion Units Ultra-precise nano-motion units using in minimum dia.26mm chamber	86	
	9.2	FMR Measurement High-frequency measurements on thin-film samples, with sample perpendicular/parallel to magnetic field configurations	73	11		General Instrument		89-89
	9.3	ST-FMR Measurement High-frequency measurements on thin-film samples, with sample perpendicular/parallel to magnetic field configurations	75		11	Kelvinion Temperature Monitor & Controller	89	
10		Confocal Optical Measurement	77-88					
	10.1	Stackable Function Module - Raman / Fluorescence Spectroscopy	78					
	10.2	Stackable Function Module - Magneto Optical Kerr Effect (MOKE)	80					
	10.3	Confocal Probe Suitable for cryogenic confocal measurement and compatible with the most superconducting magnet platforms	83					
	10.4	Low-Temperature Objective Optical objective for long-time stable working at low temperature	84					

General Measurement ETM.Probe.30

Measurement Module

.

11

ETM.3DRotProbe.50

Single Axis Rotation ETM.RotProbe.30

• Electric Transport Measurement Series

	General Measurement - ETM.Probe.xx.xx	Single Axis Rotation - ETM.RotProbe.xx.xx	Dual Axes Rotation - ETM.3DRotProbe.xx.xx
Functions	General DC & AC measurements can be realized. Fiber, high voltage, coaxial cable and DAC are compatible.	Sample can be rotated along a single axis. High voltage, coaxial cable and DAC are compatible.	Integrate a piezoelectric rotator on the mechanical axis. Completely cover three-dimensional space sphere.
1 Work environment		Temperature: 1.4 K ~ 400 K; Pressure: $10^5 \sim 10^{.5}$ Pa; Magnetic	Field: $0 \sim 18$ Tesla;
2 Diameter		dia-26 mm / dia-30 mm / dia-50 mm	
3 Rotation	manually fix sample direction	Single mechanical rotation axis	Mechanical rotation axis & Piezoelectric rotation axis
Range	Limitless	$0\sim370$ °	Mechanical: 0 \sim 370 ° Piezoelectric: -20 \sim 200 ° (dia-30 mm) -30 \sim 300 ° (dia-50 mm
Precision	Limitless	0.1 °	Mechanical: 0.1 °; Piezoelectric: < 0.01 °
4 Withstand voltage		200 V	
5 Leakage current		< 100 pA @ 100 V	
6 Channel (STD/MAX)	12/24 (dia-26 mm, dia-30 mm) & 24/48 (dia-50 mm)	12/16	8/8 (dia-26 mm, dia-30 mm) & 16/16 (dia-50 mm)
7 Sample holder		see the sample holders brochure for details	
РСВ	Compatible	Compatible	Compatible
LCC 28	Compatible	Only dia-50 mm compatible	Only dia-50 mm compatible
LCC 44	Only dia-50 mm compatible	Only dia-50 mm compatible	N. A.
DIP 16	Compatible	Compatible	Only dia-50 mm compatible
8 Coaxial cable upgrade	2 (dia-26 mm, dia-3	30 mm) & 4 (dia-50 mm)	N. A.
9 Vacuum option upgrade			
10 Compatible options	Matrix Switch S	ystem, Breakout Box, Check Stage and ETM Accessories are compatil	ble for all above products.

* The Multifields Technologies ETM series are seamlessly compatible with common platforms such as QD-PPMS, Oxford-TeslatronPT, Pride-CPMS, Cryogenic-CFMS and others:

** The above are all recommended configurations. Multifields Technologies provides customization services. If you have special requirements, please contact us.

Cover conventional electrical measurements such as resistance, Hall, etc., provide the options of optical fiber, high voltage and small signal measurement.

Electric Transport Measurement (ETM) 1.1 General ETM probe - Models

General ETM probes with multiple functional options for cryogenic chambers with different bore sizes

Model Details - General ETM probe

• ETM.MCProbe.aa.bb.cc.dd.ee.ff

Sample Holder 2 Vacuum Environment 3 Slide Seal 4 Options .MF12/.MF16/.LCC20 / .SS .SL / / / / /						
.MF12/.MF16/.LCC20 / .SS .SL	Sample Holder ²	Vacuu	m Environment ³	Slide	Options ⁵	
	.MF12/ .MF16/ .LCC20		/	.SS	.SL	
			/		/	
/ / .CX			/		/	.CX
.cone / / .Cn	IF127 .MF167 .DIP167 .LCC207 .LCC28	.cone	/		/	.Cn
.cone / .SS .SL .OF		.cone	/	.SS	.SL	.OF

/

/

1 Chamber: .26P - QD PPMS; .26/.30/.50 - Platforms with dia-26/30/50 mm chambers such as Oxford-TeslatronPT、 Pride-CPMS; .25C/.30C/.50C - Cryogenic with dia-26/30/50 mm chambers;

.MF12/ .MF16/ .MF24/ .DIP16/ .LCC20/ .LCC28/ .LCC44

²Sample Holder: .MF12/16/24 - MF PCB12/16/24 pin sample holders; .DIP16 - DIP - 16pin chip carrier; .LCC20/28/44 - LCC - 20/28/44 pin chip carrier;

³ Vacuum Environment: .Cone - Conical seal; .In - Indium wire seal; / - No vacuum required;

.25C

.26P

.26

.30

.30C

.50

.50C

⁴ Slide Seal: .SS - Cryogenic original slide seal; .SL - MF slide seal & airlock; / - No slide seal required;

⁵ options: .CX - Cernox temperature sensor..Cn - Upgrade n pcs of coaxial cables; .OF - Optical fiber; / - No option required;

* This table is used as a guide for selecting general ETM probes. For specific selections or other options, please consult the sales staff of Multifields Technologies.

➡Recommend Models:

• ETM.MCProbe.26P.MF12

ETM.MCProbe

- ETM.MCProbe.26P.2MF12
- ETM.MCProbe.26P.MF16
- ETM.MCProbe.26P.MF12.OF

- ETM.MCProbe.26P.MF16.OF
- ETM.MCProbe.26P.LCC28
- ETM.MCProbe.26P.DIP16
- ETM.MCProbe.30.MF12.CX

- ETM.MCProbe.30.2MF12.CX
- ETM.MCProbe.30.MF16.CX

.cone

.cone

- ETM.MCProbe.30.MF12.CX.OF
- ETM.MCProbe.30.MF16.CX.OF

.In

.In

• ETM.MCProbe.50.2MF12.CX

/

.SL

- ETM.MCProbe.500.MF16.CX
- ETM.MCProbe.50.MF12.CX.OF
- ETM.MCProbe.50.MF16.CX.OF

Electric Transport Measurement (ETM) 1.1 General ETM probe - Application

Designed for low-level signal measurements with ease and convenience

Application (1)–

Application (2)–

Transition temperature of superconducting materials

Sample Information	Superconductor				
AultiFields Products	General ETM probe (ETM.Probe.26P) Keithley 6221 & 2182A				
Platform	Pride - CPMS- 1 4T				

The four-wire method is used to measure the resistance of the sample. In order to obtain an accurate resistance value and exclude the noise, the positive and negative currents are applied alternately.

Method

Electric Transport Measurement (ETM) 1.2 Single Axis Rotation ETM - Overview

Rotating ETM probe allows for 360° sample rotation along a single axis.

ETM.RotProbe.30.MF12

ETM.RotProbe.30.MF16

ETM.RotProbe.50.DIP16

ETM.RotProbe.50.LCC44

Key Features

- Range: -10° ~ 370°; Hysteresis error < 1°;
- Withstand voltage > 200 V (DC);
- Excellent leakage current;
- Provide vacuum options;

- Compatible with a variety of sample holders;
- Provide coaxial cable for option;
- Working temperature: 1.5~400K; Field: 18 Tesla;
- Compatible with QD-PPMS Dynacool, Oxford-TeslatronPT, Cryogenic and Pride-CPMS platforms.

Electric Transport Measurement (ETM) 1.2 Single Axis Rotation ETM - Models

Single axis rotation ETM probes with multiple functional options for cryogenic chambers with different bore sizes

Model Details - Single Axis Rotation ETM probe

	Chamber ¹	Sample Holder ²	Vacu	ium Environmei	nt ³	Slide	Seal ⁴	Options ⁵
	.25C	.MF12/ .MF16		/		.SS	.SL	
	.26P		/		/			
	.26			/			/	
ETM.RotProbe	.30	.IVIF127 .IVIF167 .DIP167 .LCC20	.cone	/			/	.CX
	.30C		.cone	/		.SS	.SL	
	.50	.MF12/.MF16/.MF24/.DIP16/	.cone	.In	/		/	
	.50C	.LCC20/ .LCC28/ .LCC44	.cone	.In	/		SL	

¹ Chamber: .26P - QD PPMS; .26/.30/.50 - Platforms with dia-26/30/50 mm chambers such as Oxford-TeslatronPT、 Pride-CPMS; .25C/.30C/.50C - Cryogenic with dia-26/30/50 mm chambers;

² Sample Holder: .MF12/16/24 - MF PCB12/16/24pin sample holders; .DIP16 - DIP - 16pin chip carrier; .LCC20/28/44 - LCC - 20/28/44pin chip carrier;

³ Vacuum Environment: .Cone - Conical seal; .In - Indium wire seal; / - No vacuum required;

⁴ Slide Seal: .SS - Cryogenic original slide seal; .SL - MF slide seal & airlock; / - No slide seal required;

⁵ Options: .CX - Cernox temperature sensor..Cn - Upgrade n pcs of coaxial cables; .OF - Optical fiber; / - No option required;

* This table is used as a guide for selecting general ETM probes. For specific selections or other options, please consult the sales staff of Multifields Technologies.

➡Recommend Models:

- ETM.RotProbe.26P.MF12
- ETM.RotProbe.26P.MF16
- ETM.RotProbe.30.MF12.CX
- ETM.RotProbe.30.MF16.CX

- ETM.RotProbe.50.MF12.CX
- ETM.RotProbe.50.MF16.CX
- ETM.RotProbe.30C.MF12.SS.CX
- ETM.RotProbe.30C.MF16.SS.CX

- ETM.RotProbe.30C.MF12.SL.CX
- ETM.RotProbe.30C.MF16.SL.CX
- ETM.RotProbe.50C.MF12.SS.CXETM.RotProbe.50C.MF16.SS.CX

- ETM.RotProbe.50C.MF12.SL.CX
- ETM.RotProbe.50C.MF16.SL.CX

12

Electric Transport Measurement (ETM) 1.2 Single Axis Rotation ETM - Components

Complete system including probe, controller and measurement software.

Materials Characterization

Electric Transport Measurement (ETM) 1.2 Single Axis Rotation ETM - Applications

Application (1)-

Spin Hall magnetic field angle dependence at different temperatures

Sample InformationW(5)/CoFeB(0.9)/MgO(2)/Ta(2 nm)MultiFields Products1. ETM.RotProbe.30.MF12
2. MF.Breakout Box.Pro.MaxElectric Meters1. Keithley 2182A
2. Keithley 6221

Application (2)–

The magnetic field angle dependence on the second harmonic electric transport measurement

Electrical Transport Measurement (ETM) 1.3 Dual Axis Rotation - Overview

Completely cover three-dimensional space sphere (using 3D polar coordinates to name rotation angle, theta & phi).

Completely cover three-dimensional space sphere

The direction between magnetic field and the sample could be rotated through rotating the sample. The mechanical axis is fixed and the piezoelectric axis is the following axis. If we consider the orientation of the magnetic field with respect to the sample, as shown in the figure above, the two angles of the spherical coordinates: the elevation angle θ corresponds to the mechanical axis angle, and the azimuth angle ϕ corresponds to the piezoelectric axis angle.

Features

- Mechanical axis rotation range: -10° to 370°;
- Piezo rotator with closed-loop control and 0.01°
- Maximum withstand voltage: 200 V (DC);
- Excellent leakage current;
- Compatible with vacuum option;

- Compatible with various sample holder: PCB, LCC &
- Support upgrade of high-precision and low-noise
- Operating temperature 1.5 to 400K; Maximum magnetic field 18 Tesla;
- Compatible with QD-PPMS Dynacool, Oxford TeslatronPT, Cryogenic and Pride CPMS system, etc.

Char

Dual Axis Rotation • ETM

Functions: resistance / Hall (I-V, R-T, R-H, etc.), van de Paul, lock-in (AC resistance / Hall, harmonic) measurement

			Dual Axis Rotation (ETM.2DRotProbe.30.MF8)	Dual Axis Rotation (ETM.2DRotProbe.50.MF16)							
1	Work environment		Temperature: 1.4 K ~ 400 K; Pressure: $10^5 \sim 10^{-5}$ Pa; Magnetic Field: $0 \sim 18$ Tesla;								
2	Diameter		dia-26 mm / dia-30 mm / dia-50 mm								
3	Rotation	Integrated piezoelectric rotator on a mechanical rotating axis, rotation range cover a complete sphere									
	Papao	mechanical axis	$0^{\circ} \sim 370^{\circ}$	$0^{\circ} \sim 370^{\circ}$							
	Kange	Piezoelectric axis	$-20^{\circ} \sim 200^{\circ}$	$-30^{\circ} \sim 300^{\circ}$							
	Precision	mechanical axis 0.1°									
		Piezoelectric axis < 0.01°									
4	Withstand voltage	200 V									
5	Leakage current	< 100 pA @ 100 V									
6	Channel (STD/MAX)	8 16									
7	Sample holder	see the sample holders brochure for details									
	PCB		Only MF8	Only MF12 / MF16							
	LCC 28		N. A.	Compatible							
	LCC 44		N. A.	N. A.							
	DIP 16		N. A.	Compatible							
8	Coaxial cable upgrade		2	4							
9	Vacuum option upgrade		Compatible	Compatible							
10	Compatible options	MF. Breakout Box; MF.CheckStage; MF.Matrix.6-24 etc.									

* The Multifields Technologies ETM series are seamlessly compatible with common platforms such as QD-PPMS, Oxford-TeslatronPT, Pride-CPMS, Cryogenic-CFMS and others;

** The above are all recommended configurations. Multifields Technologies provides customization services. If you have special requirements, please contact us.

•

Electrical Transport Measurement (ETM) 1.3 Dual Axis Rotation - Key Parts

Piezoelectric rotator with16 mm size, compatible with the chamber of dia.26~30 mm

ETM.2DRotProbe.30.MF8

Multifields Technologies ® Piezoelectric Motion Piezoelectric Motion Controller MC - NewtonLT.06

Sample holder, 8 channels (.MF8)

Rotator.16.SE - Specifications

	Temperature: 1.4 ~ 400 K;	5. Driving Voltage	$20V \sim 200 V$
1. Work environment	Pressure: 1 × 10 ⁻⁷ mbar;	6. Max. Load	100 g
	Max. Field: 35 Tesla	7. Sensor	Resistance sensor
2. Weight	10 g	8. Sensor Range	270 °
3. Range	$-20^{\circ} \sim 200^{\circ}$	9. Sensor Precision	0.01°
4. Max. Speed	~ 10 °/s @300 K	10. Repeatability	~ 0.05°

Electrical Transport Measurement (ETM) 1.3 Dual Axis Rotation - Key Parts

Piezoelectric rotator with 25 mm size, compatible with the chamber of dia.50 mm

 \Rightarrow Fixed rotation axis - θ mechanical rotation

ETM.2DRotProbe.50.MF16

• Multifields Technologies ® Piezoelectric Rotator Piezoelectric rotator made entirely of non-magnetic materials with closed-loop position control, requiring the specialized controller MC - NewtonLT.06.

14/18/28/28					•		9.00000
M2.NewtonLDA	A	A	A	a.	A	÷.	····· 0 · A 5
							7-0 - 7
	Q.	9	9	6	9	E.	Δ.00000 0 000
		Charles .					and rank that can

Multifields Technologies ® Piezoelectric Motion Piezoelectric Motion Controller MC - NewtonLT.06

Rotator.25.SE - Specifications

	Temperature: 1.4 ~ 400 K;	5. Driving Voltage	$20V \sim 200 V$
1. Work environment	Pressure: 1 × 10 ⁻⁷ mbar;	6. Max. Load	100 g
	Max. Field: 35 Tesla	7. Sensor	Resistance sensor
2. Weight	10 g	8. Sensor Range	270 °
3. Range	$-20^{\circ} \sim 200^{\circ}$	9. Sensor Precision	0.01°
4. Max. Speed	~ 10 °/s @300 K	10. Repeatability	~ 0.05°

MultiFields 多场科技

field.com | MultiFields.Technologie

Materials Characterization

Essential & recommended options for electric transport measurement

Matrix Switch

Sample Holders

Electric Transport Measurement (ETM) 1.4.1 Matrix Switch System

Arbitrarily switch the connection between the source meter and the device to make the measurement as you wish!

MF.Matrix.6-24

Matrix switch system support a wide range of signals in the test and measurements industry. DC switching capabilities from 10 nV to 0.5 kV make MultiFields matrix system a versatile production test tool for a wide array of applications. Touch-screen directly control eliminates the need for the computer to control every step of the test procedure. The status of every channels all shows on screen simultaneously.

- 6 row BNC connectors; 24 columns Lemo.3B.26pins
- Max. Voltage allowed to use is 250 V;
- The line switching time is about 3ms;
- Software supports automatic switching of multiple samples and van de Paul method;
- The touch-screen real-time monitors and controls the state of all available channels;
- IEEE-488 & RS232 interface;

MF.Matrix.6-24 · Specification

Concrel Information	
General mormation	
Matrix Configuration	6 * 24 each of the 144 cross-points is made up of a relay switch. By closing the appropriate crosspoint switch, any matrix row can be connected to any column in the matrix.
Connectors	6 rows ~ BNC connectors; 24 columns ~ Lemo.3B.26pins;
Size	19 inch rack unit, 2U
Work environment	0~50°C;
Technique Details	
Max. DC Voltage	220V DC between any two pins, 2A switched.
Max. AC Voltage	250V AC peak between any two pins, 2A switched.
Common Mode Voltage	175 V Peak
Contact Life	Cold Switching 10 ⁸ times
Channel Resistance	< 1 Omega
Offset Current	< 100pA
Contact Potential	< 500nV
Actuation time	3ms
Isolation	Above 10 ⁹ omega between paths
Crosstalk between Channels	< -35 dB
Relay Drive Current	16 mA
Interface & Communication	
Trigger Sources	RS232 / GPIB / Manual (Touch-Screen)
Communication	GPIB / RS232
Software	Labview VI

Materials Characterization

Electric Transport Measurement (ETM) 1.4.1 Matrix Switch System - Applications

Arbitrarily switch the connection between the source meter and the device to make the measurement as you wish!

Application (1)-

Materials Characterization

van de Pauw Method

It is a technique commonly used to measure the resistivity and hall coefficient of a homogenous and isotropic sample with arbitrary shape. Using the built -in algorithm, the switch matrix automatically switch current I and voltage V among the four contacts of the sample according to Van De Pauw procedure, and calculate the resistivity or hall coefficient, precisely.

Application (2)-

Multiple sample measurement

To improve efficiency, researchers often use multiple sets of SMU(Source meter unit) to perform high throughout sample measurements, which cannot be afforded by most labs. One set of SMU plus MultiFields switch matrix can perfectly solve this problem at much lower cost: Switch matrix supports automatic switching between different samples and simultaneous test of up to six samples.

Electric Transport Measurement (ETM)

1.4.2 Breakout Box with ESD Protection

Low leakage current guarantees a higher signal accuracy and better resolution.

	-	r.d	EASUREMEN	T CHANN	ELS		Breakout Box Pro Mak
54	O Para	0 0 ····	0	0		6 Contraction	Multifunction Transfer Unif pro-Rowice (Carrole Indecting)
Mul Tace	() E	0	0 T	10 Contraction	0	0 (C	
tiFields	o Er	0	· 👌 🔃	(a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	17 0 19 19 19 19 19 19 19 19 19 19	8 1	
	18 (A) (B) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A			22 (A) (T)	21	A 1	GND

MF.BreakoutBox.Pro.Max

Breakout Box is designed to play a role of connector adaptor between sample probe and commercial electric meters. The leakage current and pick-up noise level are key parameters for a better weak-signal quality. As the research field of low-dimension materials and nano-device raising, ESD (electrostatic discharge) protection becomes indispensable function for a breakout box.

"Breakout Box Pro 24pins" is a perfect solution, whose leakage current and noise level are strictly constrained to a very low level. And it supples a complete ESD protection throughout the sample measurement, (1) sample & meters first connect to systems; (2) sample & meters in standby statues.

Key Feature

- 3 status prepared for end user's experiments, Float, GND and Measurement
- Paired with MultiFields original cable(2.5m length) only 100 pA leakage current @ DC-100V voltage
- → Max. Voltage allowed to use is 500 V
- ➡ 12pins & 24pins two versions available

			Internetion Crimines
	Breakout Box 24pins MF.BreakoutBox.Max	Breakout Box ^{pro} 12pins MF.BreakoutBox.Pro	Breakout Box 24pins MF.BreakoutBox
Advanced Function	Low noise Low leakage current	Low noise Low leakage current ESD protection	Low noise Low leakage current
Output channels	24 channels	12 channels	12 channels
Installation		19-inch Rack Size	
Hight	2U	1U	10
Input		Lemo.3B.26pin	
Output		Standard BNC	
Leakage current		100 pA@ DC 100V	

Shield & All BNC connectors' shield and metal box are electric-connected. One individual banana connector is left to end user, connecting to GND or keeping it float.

&Group

MultiFields

1.4.3 Check Stage

Flexible desktop breakout box for device measurements anytime & anywhere

• Removable Holder Base Holder base can be flexibly adapted to a variety of sample holders

• Banana (F) Connector BNC shields and the box's metal housing are electric-connected with this connector.

MF.CheckStage.PP12.BNC

Compatible with all sample holder MultiFields supplied

in various measurement solution.

- Electric transport
- Thermal transport
- Dielectric & Ferroelectric

	Sample Holder - 8pin	Sample Holder - 12pin	Sample Holder - 16pin		
	MF.CheckStage.MF8.BNC	MF.CheckStage.MF12.BNC	MF.CheckStage.MF16.BNC		
Advanced Function	Low noise Low leakage current	Low noise Low leakage current ESD protection	Low noise Low leakage current		
Channel	8 channels	12 channels	16 channels		
适配样品托	etm.sh.mf8.op	ETM.SH.MF12.OP ETM.SH.MF12.OP.Cu ETM.SH.MF12.IP	ETM.SH.MF16.OP ETM.SH.MF16.OP.Cu ETM.SH.MF16.IP		
Input	Lemo.3B.14pin	Lemo.3B.14pin	Lemo.3B.26pin		
Output		Standard BNC			
Leakage current	100 pA@ DC 100V				
Shield & GND	All BNC connectors' shield	and metal box are electric-conni	ected. One individual banana		

Electric Transport Measurement (ETM) 1.4.4 ETM Accessories

Options for Electric Transport Measurement

- Bonding Cube series
- ETM.BongdingCube.PP12
- ETM.BongdingCube.MF8
- ETM.BongdingCube.MF12
- ETM.BongdingCube.MF16
-

BondingCube (Wire-bonding ESD protection cube) \rightarrow

Wire bonding is the process of creating electric connection between sample and sample-holder using bonding wires, such as aluminum and gold. For many low-dimension or nano-device, the ESD protection is very important during sample transferring and bonding process.

All the sample holder's pins are electric-connected with the whole bulk copper cube and one banana(f) connector left for linking to GND.

R - Cube →

A resistor with switchable resistance values, providing a 5-position switch for switching between 5 different resistances. "1 - 2" for splitting the core and shell of one BNC connector to two BNC connectors while connecting the resistor; "1 to 1" for connecting the resistor directly between two cores BNC connectors.

• ETM.SH.MF8.OP • ETM.SH.PP12.OP

- ETM.SH.PP12.OP.Cu
- ETM.SH.PP12.IP
- ETM.SH.MF12.OP
- ETM.SH.MF12.OP.Cu
- ETM.SH.MF12.IP • ETM.SH.MF16.OP
- ETM.SH.MF16.OP.Cu
- ETM.SH.MF16.IP • ETM.SH.MF24.OP

Materials Characterization

24

- ETM.SH.MF24.OP.Cu
- ETM.SH.MF24.IP
- ETM.SH.DIP8m
- ETM.SH.DIP8
- ETM.SH.DIP16m
- ETM.SH.DIP16
- ETM.SH.DIP24
- ETM.SH.LCC20
- ETM.SH.LCC24
- ETM.SH.LCC28
- ETM.SH.LCC44

•

Sample Holder→

A variety of sample holders, including MF standard 12pins/16pins/24pins PCB sample holders, LCC / DIP ceramic sample holders, and customized sample holders.

Electric Transport Measurement (ETM) 1.4.4 ETM Accessories - Cables

Options for Electric Transport Measurement

ETM.Cable.HC19-Lemo26

$\text{Measurement Cable} \rightarrow$

Multifields Technologies provides high-quality twisted shielded cables, coaxial cables, etc. as measurement cables. Connectors can be adapted to mil-spec connectors, LEMO, Fischer and other connectors as required.

➡Recommend Models:

- ETM.Cable.HC19-Lemo26
- ETM.Cable.HC26-Lemo26
- ETM.Cable.HC19-Lemo14
- ETM.Cable.HC26-Lemo14

- ETM.Cable.Lemo14-Lemo26
- ETM.Cable.Lemo14-Lemo26
- ETM.Cable.Fischer16-Lemo26
- ETM.Cable.Fischer24-Lemo26
-

Instrumentation Cables→

Multifields Technologies provides cables for a variety of electrical source meters, such as Keithley 2400/6221/2182A/6517B/4200, etc., SRS SR830/850/860, etc., and Keysight 4980A(L)/3446x, etc. The professional modifications and upgrades make the cables more convenient and flexible to use.

➡Recommend Models:

- ETM.Cable.6221M
- ETM.Cable.6221T
- ETM.Cable.2182M
- ETM.Cable.2BNC
- ETM.Cable.BNC-SMA
- ETM.Cable.2Ban-BNC
- ETM.Cable.Cryo.SS
- ETM.Cable.Cryo.SC

•

Materials Char

Thermal Measurements \cdot Series

Functions: Thermal conductivity, thermoelectricity, heat capacity and dilatometer

	Thermal Transp	ort Measurement (TTM)	Thermal Transport Measurement (TTM)	Heat Capacity Measurement (HCM)	Thermal Expansion Measurement (ThE)
Functions	Thermal conductivi for b	ty and thermoelectric effect oulk materials	Thermoelectric potential for thin-film materials	Excellent adiabatic control and accurate measurement of the heat capacity	Sensing small displacement with temperature/field using a parallel plates capacitor
1 Work environment	< environment		·Temperature: 1.4 K ~ 400 K; Pressure: 10 ⁵ ~ 10 ^{.5} Pa; Magnetic Field: 0 ~ 18 T		ēsla;
2 Diameter	dia-26 mm / dia-30 mm / dia-50 mm) mm / dia-50 mm	
3 Sample Types		Bulk	Thin Film	Bulk	Bulk
4 Functions	Thermal conductivity	Seebeck effect, Nernst effect, Peltier effect	Seebeck effect, Nernst effect,	Heat capacity measurement	Thermal expansion / magnetostriction effect
5 Sample Requirements	Size < 3 mm *	^r 3 mm * 10 mm (bulk)	Size < 5 mm * 8 mm (thin film)	Size < 3 mm * 3 mm * 5 mm; Weight 1 ~ 300 mg	Thickness: 0.1 \sim 6 mm
6 Meas. Range	Conductivity: 10 µW/K ~ 100 mW/K	Seebeck coefficient: 0.1 µV/K ~ 1 V/K*	Seebeck coefficient: 0.1 µV/K ~ 1 V/K*	Heat capacity:	expansion and contraction: ΔL : -0.1 ~ 0.1mm
7 Accuracy	± 5%	6, 1.5 ~ 400 K	± 5%, 1.5 ~ 400 K	± 5%, 1.5 ~ 400 K	
8 Resolution	Conductivity: 1 µW/K	Thermal voltage: 2 nV (Minimum range)	Thermal voltage: 2 nV (Minimum range)	10 nJ @ 2K	50 pm for AH Series and 0.5 nm for Keysight Series

* Measurement range of Seebeck coefficient depends on the measurement temperature;

* The Multifields Technologies thermal measurements series are seamlessly compatible with common platforms such as QD-PPMS, Oxford-TeslatronPT, Pride-CPMS, Cryogenic-CFMS and others;

** The above are all recommended configurations. Multifields Technologies provides customization services. If you have special requirements, please contact us.

Materials Characterization

Thermal Measurements 2. Thermal Transport Measurement (TTM)

An integrated solution for thermal conductivity, Seebeck and resistance measurement

Thermal Transport Measurement Systems, Delivery List

Thermal Transport Measurement Systems - Specification

Work Environment			
Work Environment	Temperature: 1.5 ~ 400 K; Field: 0~18 Tesla		
Compatible Platforms	Oxford TeslatronP	PT, PPMS, Cryogenics, etc	
TTM System Performance			
Sample Types	Bulk	< & thin film*	
	Accuracy	± 5%, 1.5 ~ 400 K	
Thermal Conductivity	Range	10 µW/K ~ 100 mW/K	
	Accuracy	±5% or ± 100 nV	
Seebeck Coefficient	Range	0.1 µV/K ~ 1 V/K**	
Sample Size (Recommend)	 2.5*1.5*6 mm³ for 0.1 1.5*1.5*6 mm³ for 2 ~ 1.5*1.5*10 mm³ for >3 	~ 2.5 W/m·K 50 W/m·K 30 W/m·K	
TTM Meter			
Functions	 2-channel thermocoup 1-channel heater output 2-channel temperature 1-channel nano-volt m 	ble readout ut e monitoring jeasurement***	
Size	280 mm * 220	mm * 88 mm (W*H*L)	
Interfaces	U	SB & GPIB	
TTM Software			
Environment Control	Temperature, magr	netic field, state of chamber	
Measurements	Thermal conductivity, Seebe resistivity an	eck effect, Nernst effect, Peltier effect, d thermal Hall effect	
Automatic Function	Auto-tuning of Δ T at different t	temperatures avoiding radiation losses	

* Details will be discussed in next section;

** Measurement range of Seebeck coefficient depends on the sample temperature;

*** Nano-volt module.

Materials Characterization

Thermal Transport Teasurement Systems (TTM) 2.1 TTM Meter

Built-in thermocouple and thermometer monitoring module for precise control of thermal gradients. Optional multiple nanovolt measurement channels

<complex-block>

Nano-volt meter, 0/1/2 channels

- Thermometer Monitor
- Heater Power Supply

GPIB Interface

Key Features

- High precision steady-state measurement method makes batter than 5% accuracy for thermal conductivity and Seebeck susceptibility
- Built-in automatic iterative algorithm for optimal deltaT selection at different temperature
- Specialized measuring meter enables one-stop high precision measurement
- Supporting bulk thermal transport measurement and thin film thermoelectric coefficient by switching to different measurement modules
- Available from 1.5 to 400 K and up to 18 Tesla magnetic field
- Compatible with Oxford® TeslatronPT, QD® PPMS, Cryogenics® and other third-party systems

2.1 TTM Meter

TTM Meter - Sepecifications

Funtion.01	Thermocou	iple Readout
Channel	2	
Range	±2 mV	
Resolution (RMS)	30) nV
Rate	10 \$	SPS*
Thermalcouple	S/K/E/J	I/T/AuFe
Funtion.02	Thermocou	ple Readout
Channel		1
Range	0~10 mA (Current)	0~100 mW (Power)
Heater Resistance	1 kC	Dhm
Accuracy	<0.1 % (Power)	1 uV (Voltage)
Rate	10	SPS
Funtion.03	Temperat	ure Sensor
Channel		2
Sensor Types	Cernox™ & PT100	& PT1000 & Diodes
Measurement Range	0.3 ~ 420 K (Ce	rnox™ CX-1030)
Auto Range	Y	ES
Reverse Current	Y	ES
Curves	300 points. N	1ax. 100 curves
Filters	Kalma	n Filter
Resolution (see example data 1)	0.0	01%

Funtion.04 Nanovolt Meter Channel 1 ±2V Range Resolution (RMS) Input Range Gain ± 2 μV 1 M 2 nV \pm 20 μ V 100 k 2 nV ± 200 μV 10 k 2 nV Resolution (RMS) (see example data 2) 1 k ±2mV 20 nV 128 50 nV ± 20 mV ± 200 mV 8 200 nV ± 2 V 1 2 uV 10 SPS Rate Input Resistance > 1 GOhm Communication & Connectors Funtion.05 GPIB & USB Communacation Display 5.0 inch TFT touch-screen with 1280 x 720 pixels 220 VAC, 1 Amp MAX Power 45.010 45.005 (X) 45.000 L

Volt. (nV)

-10

-11

-12 L

3

2

Time (min)

Example Data 2

4

5

MultiFields

&Group

44.995

44.990

0

200

400

Points

Example Data 1

600

800

1000

* SPS: Sample per second

Thermal Transport Measurement Systems (TTM) 2.2 TTM Probes

The TTM probe with a 2 Kelvin in-situ vacuum chamber guarantees no heat leakage caused by gas flow around sample. Two different design sample holder.

Thermal transport measurement Systems (TTM) 2.3 TTM Accessories - Sample holder

For bulk/film sample MultiFields® supplied two sample holder design.

Bulk sample holder TTM. SH.Bulk

	Pin function	Specification	Pin Number	Note			
Fun	Function pins						
1	Termometer 1	Cernox™ thermometer, monitor base temperature	1 & 14	Paired			
2	Thermocouple 1	Measure temperature difference between hot end and base, $\Delta {\sf T}_{\sf h}$	2 & 3	Paired			
3	Thermocouple 2	Measure temperature difference between cold end and base, $\Delta {\sf T}_{\sf c}$	4 & 5	Paired			
4	Heater	1k~10k Ohm heater, voltage and current are measured simultaneously to accurately obtain heating power	7 & 8	Paired			
5	Thermal Votage	Used to measure thermal voltage. Pure copper wire guarantees lower voltage offset.	11 & 12	Paired			
Star	ndby pins						
6	EXT 1, 2	Spare for customer use, BNC connectors on MultiFields TTM meter	6 & 9	Paired			
7	EXT 3, 4	Spare for customer use. If the nano-volt module were installed in TTM.Meter, 10 (+) & 13 (-) are occupied for voltage measurement.	10 & 13	Paired			

Thin-film sample holder TTM. SH.Film

	Pin function	Specification	Pin Number	Note				
Fund	Function pins							
1	Thermometer 1	Cernox™ thermometer, monitor base temperature	1 & 14	Paired				
2	Thermometer 2	Cernox™ thermometer, monitor high-T end	6 & 9	Paired				
3	Heater	1 k~10 k Ohm heater, voltage and current are measured simultaneously to accurately obtain heating power	7 & 8	Paired				
4	Thermopower voltage	Used to measure thermopower voltage. Pure copper wires guarantees lower voltage offset.	11 & 12	Paired				
Stan	dby pins							
5	Standby pins	Pure copper wire. Suggest used for low voltage signal measurement. One pair independent connectors at probe	2&3	Paired				
6	EXT 1, 2	Spare for customer use	4 & 5	Paired				
7	EXT 3, 4	Spare for customer use. Recommend: Current source for R measurement. BNC connectors on MultiFields TTM meter	10 & 13	Paired				

Thermal Transport Measurement Systems (TTM) 2.3 TTM Accessories - ToolBox

Thermal transport measurements require skilled operation and wellprepared experimental accessories for higher accuracy

TTM. Toolbox

MultiFields &Group

ToolBox List

	items	Specification	Quantity
Sta	ndard Sample		
1	Pb 4N	Pb metal wire, 99.99%, Φ 2.0 mm, Length 2 cm Alfa	1 pc
2	Fused Quartz	Quartz cubic block, 99.99% 3 mm x 3 mm x 2mm	10 pcs
Adl	nesive		
3	N-Grease		
4	Adhesive-Black Part A	Electric insulted, good thermal conductivity at 2K, epoxy.	5 g
4	Adhesive-Black Part B	Electric insulted, good thermal conductivity at 2K, catalyst.	5 g
Б.	Adhesive-Sliver Part A	Good electric conductivity , good thermal conductivity at 2K, epoxy.	5 g
5	Adhesive-Sliver Part B	Good electric conductivity , good thermal conductivity at 2K, catalyst.	5 g
The	ermocouples wires		
6	Thermocouple 1 Part A	E-Type thermocouple, Chromel wire, $\Phi 25 \mu$ m	1 m
0	Thermocouple 1 Part B	E-Type thermocouple, Constantan wire, $\Phi 25 \ \mu m$	1 m
7	Thermocouple 2 Part A	Chromel wire, Φ25 µm	1 m
/ -	Thermocouple 2 Part B	AuFe wires, Φ25 μm	10 cm
Aux	kiliary		
8	Tweezer	Non-magnetic, 140 mm (length)	1 pc
9	Syringe		

Thermal Transport Measurement Systems (TTM) 2.3 TTM Accessories - ToolBox

The toolbox is designed for bulk and film samples with matching accessories.

TTM. SH.Bulk

items	Specification	Quantity
Sample installation accessarie		
10 Cold End	Oxygen free copper, 8mm * 9mm * 0.8 mm	20 pcs
11 Heater	1 k Ω , 0.6mm*0.8mm*0.4mm	20 pcs
12 Wire	Phosphor copper, Φ 50 μm	1 m
13 M2 Screw	Brass Screw, non-magnetic	20 pcs
14 Part Fixture	Only used for bulk sample preparing, aluminum alloy	1 pc
15 Mainbody	The pure copper plate with BeCu pins and one thermometer Cernox™ 1050 installed.	1 pc

TTM. SH.Film

items	Specification	Quantity				
Sample installation accessaries - film version						
16 Cold End	Oxygen free copper, mm * mm * mm	20 pcs				
17 Wire	1 kΩ, 1m*1m*05mm	1 m				
18 M1.6 Screw	Brass Screw, non-magnetic	20 pcs				
19 Part Fixture	Only used for film sample preparing, aluminum alloy	1 pc				
20 Mainbody	The pure copper plate with BeCu pins and one thermometer Cernox™ 1050 installed.	1 pc				

The measurement and system data is shown here in real time.

Measurement command

All measurement commands are listed, including temperature and field settings, TTM commands. The arrangement of these commands allows for automated measurements.

Sequence list

The command list is shown in this section. You can modify or delete one of them. Besides, the command list can be save or open. The sequence status is shown in the status bar.

System Status

The temperature, field and chamber status can be display and modified quickly.

The platform, sample information, instrument selection can be setting in this zone.

Measurement Result

The TTM results will be shown in this figure. We can plot the figure with different X axis and Y axis. Mater

•TTM - Δ T Curve The temperature vs. time curve will be plot in this figure in real time.

•TTM - ΔV Curve

The voltage change will be plotted in this figure. The x-axis can be time or magnetic field when Seebeck or Nernst susceptibility is measured.

Materials

35

Application (1)–

Application (2)–

Thermal conductivity of fused quartz rods

Accuracy < 5%

Accuracy refers to the deviation of the measurement result from the "true value". Thermal conductivities obtained from MF TTM system are accurate to within 5%, comparing the measured value with a reference value of the standard sample.

• Repeatability < 2%

Repeatability is the deviation between multiple measurements. By repeating the thermal conductivity measurement several times under the same conditions, the repeatability of the thermal conductivity measurement of MF TTM system was obtained to be within 2%.

Thermal Measurements 3. Heat Capacity Measurement (HCM)

Integrated solutions for specific heat capacity measurement

Heat Capacitance Measurement (HCM) - Specification

Heat Capacitance Measurement (HCM)

3.1 HCM Meter

Built-in heating and high-speed temperature monitoring channels, collecting temperature changes for real-time fitting

The optimal heating time can be calculated automatically based on the measurement results, making the measurement results more reliable.

Temperature Monitoring Interface

GPIB Communication

Key Features

- Highly accurate heat capacity measurements based on thermal relaxation methods;
- Integrated low-temperature specific heat capacity measurement solution, including: HCM Meter, probe, automatic data acquisition, and algorithms; ;
- Compatible with Oxford® TeslatronPT, QD® PPMS, Cryogenics® and other third-party systems

Function.01	Temperature monitor		
Channel	2		
Sensor Type	Cernox™ & PT100 & PT1000 & Diode		
Range	0.3 ~ 420 K (Cernox	(TM CX-1030)	
AutoRange	YES		
Current Reverse	YES		
Calibration Curve	300 Points and 100	Curves MAX	
Resolution	0.001%	,	
Funtion.02	Heater mod	Heater modular	
Channel	1		
Range	0~10 mA (Current)	0~100 mW (Power)	
Heater Resistance	1 kOhrr	1	
Accuracy	<0.1 % (Power)	1 uV (Voltage)	
Rate	10 SPS		
Funtion.03	Communication &	Connector	
Electric Connetor	D-Sub 25		
Communacation	GPIB & USB		
Display	5.0 inch TFT touch-screen with 1280 x 720 pixels		
Power	220 VAC, 1 Am	np MAX	

* SPS: Sample per second

MultiFields

&Group

Heat Capacitance Measurement (HCM) 3.2 HCM Probe

The HCM probe with a 2 Kelvin in-situ vacuum char

The HCM probe with a 2 Kelvin in-situ vacuum chamber guarantees no heat leakage caused by gas flow around sample.

Materials

Heat Capacitance Measurement (HCM) **3.3 HCM Accessories**

Specific heat capacity measurement is made easy with specialized mounting tools and accessories.

HCM. Toolbox

	items	Specification	Quantity
Sta	ndard Sample		
1	Pure Pb	Pb rod, purity 99.99%, Φ2.0 mm, Length 2 cm Alfa	1 рс
Ad	hesives		
2	N-Grease	Thermally conductive grease	5 g
3	H-Grease	Vacuum Grease	5 g
4	GE-Vanish	Low-temperature adhesive	5 g
То	ols		
5	HCM Sample Holder	For specific heat capacity measurements	1 pc
6	Sample Holder Fixture	For mounting samples	1 pc
5	Tweezer	Non-magnetic tweezer, 140 mm	1 pc
7	Screws		1 pc
8	Scalpel		1 pc

Heat Capacitance Measurement (HCM)

3.4 HCM Software

Automation software controlled by computer. compatible with a variety of low-temperature superconducting third-part commercial platforms

Measurement command

All measurement commands are listed, including temperature and field settings, HCM commands. The arrangement of these commands allows for automated measurements.

Sequence list

The command list is shown in this section. You can modify or delete one of them. Besides, the command list can be save or open. The sequence status is shown in the status bar.

System Status

The temperature, field and chamber status can be display and modified quickly.

Setting Zone

The platform, sample information, instrument selection can be setting in this zone.

Measurement Result
 The LICM regults will be

The HCM results will be shown in this figure. We can plot the figure with different x and y axis. Mater

• HCM - T vs time Curve (real-time) The temperature vs. time curve will be plot in this figure in real time.

• HCM - Fitting Curve

After one complete measurement, the experiment data curve will be fit here by relaxation model of heat capacity. One curve fit out one heat capacity data which is presented in the top figure.

Heat Capacitance Measurement (HCM) 3.5 HCM - Applications

Materials Characterization

42

Application (1)-

• Repeatability < 20 nJ/K

Repeatability is the deviation between multiple measurements. By repeating the thermal conductivity measurement several times under the same conditions, the repeatability of the thermal conductivity measurement of MF TTM system was obtained to be within 20 nJ/K.

Application (2)-

Platform QD-PPMS

2. HCM.Probe

MultiFields Products

Temperature (K)

Application (3)–

Specific heat capacity behavior of superconductor during phase transition

MultiFields &Group

Thermal Measurements 4. Thermal Expansion Measurement (ThE)

Integrated solution for thermal expansion measurement

Thermal Expansion Measurement (ThE), Delivery List

Thermal Expansion Measurement (ThE) - Specifications

Thermal Expansion Measurement (ThE) 4.1 Striction Cell

Highly precise capacitive position sensor monitors sample size variation

A variation in the sample size *L* causes a change in the position of the top plate and a consequent change in the plate spacing *d*. The capacitance between the two plates is monitored to reflect this variation.

Thermal Expansion Measurement (ThE) 4.2 ThE Accessories

Dedicated room temperature installation & calibration tool

Coaxial Connector (SMA - BNC)

The coaxial cable of the cell is connected to the SMA connector and the other end is connected to an LCR meter or capacitance bridge via a cable with a BNC connector, which allows measuring the capacitance of the cell on your desktop, and tune the preload for mounting the sample.

A stainless steel stage for stable placement on a tabletop for the cell testing.

The Accessories List

items Specification quantity Standard Sample Cu rod, purity 99.99%, 1 Pure Cu Rod Φ3.12 mm, Length 1, 2, 3 mm 1 Alfa Al rod, purity 99.99%, 2 Pure Al Rod Φ3.12 mm, Length 1, 2, 3 mm 1 Alfa Checking Tools 3 Check Stage For tuning the preload of the ThE cell 1 4 Screw For fixing the ThE cell 1 5 Coaxial Cable For the capacitance measurement 2 Installation Tools 5 Wrench For installing/removing SMA connectors 1 6 Tweezer Non-magnetic tweezer, 140 mm (length) 1

MultiFields

&Group

Thermal Expansion Measurement (ThE) 4.3 ThE Software

Automation software controlled by computer. compatible with a variety of low-temperature superconducting third-part commercial platforms

Setting Zone

System Status

Sequence list

is shown in the status bar.

The temperature, field and chamber status can be display and modified quickly.

Measurement Result

The results of displacement vs. temperature will be shown in this figure. We can plot the figure with different x and y axis.

MultiFields &Group

Application (1)–

Sample Information CaBaCo₄O₇

MultiFields Products ETM.Probe.30.ThE

Platform Oxford TeslatronPT

Application (2)–

Magnetostriction behavior of MnSi at different temperatures

Application (3)-

Magnetostriction behavior of polycrystal aluminum at low temperatures

Materials Characterization

50

* The Multifields Technologies magnetic measurements series are seamlessly compatible with common platforms such as QD-PPMS, Oxford-TeslatronPT, Pride-CPMS, Cryogenic-CFMS and others;

** The above are all recommended configurations. Multifields Technologies provides customization services. If you have special requirements, please contact us.

Vibrating Sample Magnetometer (VSM)

Magnetic Measurements · Series

Functions: M-H (magnetic hysteresis loop), M-T, AC susceptibility, etc.

VSM Meter

- Built-in precise motor control algorithm realize accurate control of sample position and vibration frequency & amplitude;
- Built-in multi-gain low-noise amplifier makes system suitable for wide-range signal measurement.

VSM Meter · VSM.Controller

VSM Module - Products List

- VSM Meter · VSM.Controller
- VSM Sensing Probe · VSM.Probe.Coil
- VSM Sample Probe · VSM.Probe.Sample
- Toolbox for Magnetic Measurements · VSM.ToolBox

VSM Probe

- Low-noise first-order gradient coils for magnetic moment detection;
 Low-noise coaxial cable is used for signal
- collecting: • Low heat leakage ensures low temperature
- applications.

AC Susceptibility Meter (ACSM)

ACSM Probe

- AC field excitation coil, low-noise detection coils and calibration coil for AC susceptibility measurement;
- Low-noise coaxial cable is used for signal collecting;
- Low heat leakage ensures low temperature applications.

ACSM Meter

- Built-in precise voltage-controlled current
 source control the alternating magnetic field;
- Built-in three AC susceptibility measurement methods, including one-point, three-point and five-point methods, meets a variety of measurement requirements.

ACSM Meter · ACSM.Controller

ACSM Module - Products List

- ACSM Meter · ACSM.Controller
- ACSM Sensing Probe · ACSM.Probe.Coil
- ACSM Sample Probe · VSM.Probe.Sample
- Toolbox for Magnetic Measurements · VSM.ToolBox

Magnetic Measurements 5.1 VSM Module - Linear Motor

Complete system including probe, controller, tool box and measurement software.

High-Speed Linear Motor - Sepecifications

Performance	
Vibration Frequency	10 ~ 80 Hz
Vibration Amplitude	$0.5 \sim 4 \ { m mm}$
Full Range	65 mm
Max Force	76 N
Resistance of Coil	3.1 Ohm
Inductance of Coil	3.1 mH
Position Control	
Position Sensor	Optical encoder
Position Resolution	< 1 um
Control Method	PID close-loop control
Dimensions and Interface	
Dimensions	155 * 155 * 232 (mm)
Flange	KF40
Electric Interface	LEMO 26pin (Famale)
Max Power	60 W

MultiFields &Group

Magnetic Measurements5.1 VSM Module

Complete system including probe, controller, tool box and measurement software.

Temperature Control Interface

Serial Communication

VSM.Controller

VSM.Probe.Coil

MultiFields

&Group

Magnetic Measurements5.1 VSM Module

Complete system including probe, controller, tool box and measurement software.

Vibrating Sample Magnetometer - Specifications

Magnetic Moment Measurement	
Temperature	1.4 K ~ 300 K
Magnetic Field	± 18 T
Accuracy	± 0.5% (using dia-2.383mm sphere)
Noise Floor (See example data)	<5×10-7 emu
Measurable Max Moment	40 emu
Vibration Amplitude	2 mm (p - p)
Vibration frequency	40 Hz \sim 65 Hz, 40 Hz (typical)
Average Time	0.5 ~ 100 seconds, 1 second (typical)
Coils Parameters	
Bore Diameter	7.0 mm
Coil Spacing	9.0 mm
Sample Requirements	
Sample Type	Suitable for all shapes of bulks, films, powders and other forms
Sample Requirements	Weight: < 20 g; length in radial dimension: < 3 mm;
Standard Holders	Quartz rod(STD); Quartz tube(STD) Electrically-controlled magnetic probes; Optically-controlled magnetic probes, etc

MultiFields &Group

VSM Options - Specifications

Electrically-controlled Magnetism	
Withstand Voltage	< 200 V (DC)
Leakage Current	< 100 pA @ 100 V (DC)
Electric Channel	2
Additional Noise	< 1×10 ⁻⁷ emu
Optically-controlled Magnetism	
Fiber Diameter	0.2 mm
Fiber Diameter	0.2 mm N.A.0.22
Fiber Diameter N. A. Interface	0.2 mm N.A.0.22 SMA905
Fiber Diameter N. A. Interface Max Power	0.2 mm N.A.0.22 SMA905 20 mW
Fiber Diameter N. A. Interface Max Power Transmission	0.2 mm N.A.0.22 SMA905 20 mW 0.95 @ 300 K

Results

Results of magnetic moment measurement can be displayed in real time using the Plot command. Users can plot the graph with different xy axes.

System Status

The temperature, field and chamber status can be display and modified quickly.

• Sequence list

VSM Centering

position.

55

www.multi-field.com | MultiFields Technologies

Magnetic Measurements 5.1 VSM Module - Application

Complete system including probe, controller, tool box and measurement software.

Application (1)-

Demonstration of the VSM automatic center finding

Sample Information	NIST 772-a	
MultiFields Products	1. VSM Module	
Platforms	QD-PPMS	

Method

Before the magnetic moment measurement, the sample needs to be placed at the centre of the sensing coils. Multifields VSM includes an automatic centering procedure, which accurately moves the sample to the center of the coils.

Position (mm)

Application (2)—

Moment (emu)

Hysteresis loop of pure Ni sphere (NIST 772-a)

Accuracy

We conducted measurement on the traceable standard sample NIST 772-a using the Multifields VSM module, and the obtained accuracy is better than $\pm 0.5\%$

Magnetic Measurements 5.1 VSM Module - Application

Complete system including probe, controller, tool box and measurement software.

Application (3)-

Hysteresis loops of ferrimagnetic YIG thin-film

Sensitivity Multifields VSM has a noise level of approximately 5 x 10-7 emu at the

minimum range, allowing a reliable measurement results for samples with a magnetic moment of 10-6 emu.

Field (Oe)

MultiFields &Group

Application (4)-

M-T curves of magnetic nanotubes with FC and ZFC

Method

After cooling the sample with / without

magnetic field, conducting the magnetization measurement during the warming precess could obtain the FC and ZFC curves, which reflects the magnetic transition of the sample.

Temperature (K)

Magnetic Measurements5.2 ACSM Module

Complete system including probe, controller, tool box and measurement software.

Temperature Control Interface

Serial Communication

ACSM.Controller

ACSM.Probe.Coil

MultiFields &Group

Materials Characterization

58

www.multi-field.com | MultiFields Technologie

Magnetic Measurements 5.2 ACSM Module - Specifications

Complete system including probe, controller, tool box and measurement software.

AC Susceptibility Meter - Specifications

Measurement	
Temperature	1.4 K \sim 300 K
Magnetic Field	± 18 T
Sensitivity	1×10 ^{.8} emu/Oe
Phase Accuracy	± 0.5 °
Driving Field	0.05 ~ 15 Oe
Frequency	10 Hz ~10 kHz
Average Time	0.5 ~ 100 seconds, 1 second (typical)
Coils Parameters	
Bore Diameter	8.0 mm
Detection Coil Spacing	9.0 mm
Sample Requirements	
Sample Type	Suitable for all shapes of bulks, films, powders and other forms
Sample Requirements	Weight: < 20 g; length in radial dimension: < 3 mm;
Standard Holders	Quartz rod(STD); Quartz tube(STD) Electrically-controlled magnetic probes; Optically-controlled magnetic probes, etc

ACSM Options - Specifications

Electrically-controlled Magnetism	
Withstand Voltage	< 200 V (DC)
Leakage Current	< 100 pA @ 100 V (DC)
Electric Channel	2
Additional Noise	< 1×10 ^{.7} emu
Optically-controlled Magnetism	
Fiber Diameter	0.2 mm
Fiber Diameter N. A.	0.2 mm N.A.0.22
Fiber Diameter N. A. Interface	0.2 mm N.A.0.22 SMA905
Fiber Diameter N. A. Interface Max Power	0.2 mm N.A.0.22 SMA905 20 mW
Fiber Diameter N. A. Interface Max Power Transmission	0.2 mm N.A.0.22 SMA905 20 mW 0.95 @ 300 K

Magnetic Measurements 5.2 ACSM Module - Software

Complete system including probe, controller, tool box and measurement software

Results

Results of AC Susceptibility measurement can be displayed in real time using the Plot command. Users can plot the graph with different xy axes.

System Status

The temperature, field and chamber status can be display and modified quickly.

Sequence list

position.

www.multi-field.com | MultiFields Technologies

Magnetic Measurements 5.2 ACSM Module - Application

Dy-based organic

VSM Module

magnets

QD-PPMS

Complete system including probe, controller, tool box and measurement software.

Application (1)—

MultiFields

Sample

Information

MultiFields

Products

Plantform

AC susceptibility measurement can be conducted in a variety of methods. Two-points, three-points, and five-points measurements are commonly used, which are also built in the Multifields ACSM system.

AC susceptibility of Dy-based organic magnets as a function of frequency and temperature

7.5x10⁻⁵

www.multi-field.com | MultiFields Technologies

Temperature (K)

Magnetic Measurements5.3 VSM & ACSM - Accessories

Complete system including probe, controller, tool box and measurement software.

VSM.ToolBox

VSM.SampleBase

VSM & ACSM Accessories List

Items	Specifications	Quantity
Standard Sample		
1 Standard Sample	Pure Pd, 0.27g	1
Sample Holder		
2 Quartz Rod	dia.3 mm, length 120 mm	2
3 Quartz Tube	dia.3 mm, length 120 mm	2
4 Sample Base		1
Adhesive		
5 GE-Vanish	Low-temperature adhesive, 20 mL	1
Tools		
6 Sticks	Non-magnetic, length 140 mm	1 pc
7 Screws	M3, L3	2 pc
8 Scissor		1 pc

MultiFields &Group

MultiFields &Group

Magnetoelectric Measurements · Series

Function: Dielectric coefficient and impedance measurement, ferroelectric properties (P-E loop, fatigue, etc.) and magneto-electric coupling coefficients, etc..

		Dielectric Measurement	Ferroelectric Measurement	Magneto-electric Coupling Measurement
	Function	Capacitance, dielectric coefficient, high resistance, P-E loop (< 200 V) measurements can be realized;	Measurements of ferroelectric properties such as P-E loop (1000 V), fatigue, and imprint can be realized; High-voltage protected design compatible with third-party platforms	Measurement of the magneto-electric coupling coefficient can be realized, and the direction of the magnetic field can be changed by using sample holders with different configurations.
1	Work Environment		Temperature: 1.4 K ~ 400 K; Pressure: $10^5 \sim 10^{-5}$ Pa; Magnetic Field: ($0 \sim 18$ Tesla;
2	Diameter		dia-26 mm / dia-30 mm / dia-50 mm	
3	Function	Capacitance, dielectric coefficient, impedance and high resistance Compatible with P-E loop and other ferroelectric measurements.	P-E loop, fatigue, imprint and pyroelectric, etc.: Compatible with capacitance, dielectric coefficient, impedance measurements.	Magneto-electric coupling coefficient measurement
4	Sample Type	Bulks & thin-film	Bulks	Bulks & thin-film
5	Sample Requirements	< 10 mm × 10 mm × 5 mm	< 8 mm × 8 mm × 3 mm	< 6 mm × 6 mm × 3 mm
6	Voltage Range	< 200 V DC	< 1000 V DC	N. A.
7	Frequency Range	0.1 Hz \sim 10 MHz;	0.1 Hz \sim 300 kHz	0.1 Hz \sim 100 kHz
8	Leakage Current	\sim 10 fA	@ 100 V	< 1 pA @ 100 V
9	Parasitic Capacitance		< 10 fF	
10	Options	Ceramic sample holder with ultra-low leakage current、Ferroelectric Ana	alyzer; Optional optical fiber for combined optoelectronic measurements.	Perpendicular/in-plane magnetic-electric sample holders; commercial lock-in amplifiers and other instruments

* The Multifields Technologies magnetoelectric measurements series are seamlessly compatible with common platforms such as QD-PPMS, Oxford-TeslatronPT, Pride-CPMS, Cryogenic-CFMS and others;

** The above are all recommended configurations. Multifields Technologies provides customization services. If you have special requirements, please contact us.

Magnetoelectric Measurements 6 Dielectric Measurement (DEM)

Compatible with dielectric, ferroelectric, pyroelectric, etc. measurements for bulks and films

Key Features

- Working temperature: 1.5 ~ 400 K, Max field: 18 T;
- Dielectric probe enables dielectric/ferroelectric/multiferroic measurement
- Dielectric, ferroelectric and pyroelectric measurements for thin-film and bulk samples can be realized.
- Pluggable sample holder with unique guard design for extremely low parasitic resistance
- Optional low-temperature optical fiber for combined optical-electric measurements
- Compatible with QD-PPMS Dynacool, Oxford-TeslatronPT, Cryogenic and Pride-CPMS platforms.

Dielectric Measurement - Specifications

Probe	
Temperature	$1.5 \sim 400 \ { m K}$
Magnetic Field	0 ~ 14 T
Withstand voltage	400 V
Frequency Range	20 Hz \sim 300 kHz
Measurement Precision	0.05%
Leakage current	< 5 × 10 ⁻¹⁴ A
Parasitic Capacitance	< 10 fF
Channel	4
Cable Type	Cryogenic coaxial cable
Function	Dielectric, ferroelectric and pyroelectric measurements for thin-film and bulk samples
Dielectric Sample Holder	
Parasitic Capacitance	< 10 fF
Withstand voltage	3000 V
background current	\sim 1 $ imes$ 10 ⁻¹⁴ A
Current Range	0.1 pA ~ 1 A

MultiFields

Materials Characterization

Application (1)— Dielectric constant of BaFe₁₂O₁₉ under different pressures

Platform PPMS

Temperature (K)

Application (2)—

Magneto-current measurement at different temperature of Fe Oxide

Application (3)— Pyroelectric effect of YFeO4 under different magnetic fields

0.4 0 T 1 T 3 T Pyroelectric Current (pA/mm²) 0.3 - 5 T 7 T - 9 T - 11 T 0.2 0.1 Steven and Anno and 0.0 48 52 44 56

Temperature (K)

• What is the pyroelectric effect?

When the temperature changes, the macroscopic polarization of the material changes. As a result, the shielding charge on the surface of the material is out of balance and the excess shielding charge is released to form a detectable current, i.e. the pyroelectric effect.

• How to measure pyroelectric effect?

1. Pre-polarization: apply a voltage to the ends of the sample while cooling the sample to desired temperature; 2. Current measurement: withdraw the voltage, connect an electrostatic meter, and increase the temperature at a fixed rate while monitoring the current of the electrostatic meter. The current show peaks when the electrostatic polarization variation is greatest (as shown in the left figure below). Integrate the current against the time to obtain the relationship between polarization and temperature (as shown in the right figure below).

Magnetoelectric Measurements 7 Ferroelectric Measurement (FEM) - Analyzer

Complete system including probe, controller and measurement software.

Multiple ferroelectric measurement functions can be selected, such as dynamic hysteresis loop measurement (DHM), PM pulse measurement (PM), static hysteresis loop measurement (SHM), leakage current measurement (LM), fatigue measurement (FM), etc.

• X / Y Axis

Y axes to plot different graphs.

Operation Interface

Enter the sample name, area, thickness and other information, the software can automatically convert the voltage, electric field, and polarization, etc.

measurements

and Pride-CPMS platforms.

• Output / Input

Key Features

- Ferroelectric analyzer combining FEM probes provides a integrated ferroelectric measurement solution;

coercivity, etc.

- Dielectric, ferroelectric and pyroelectric measurements for thin-film and bulk samples can be realized.
- Fatigue and imprint measurement can be realized

Optional low-temperature optical fiber for combined optical-electric

Compatible with QD-PPMS Dynacool, Oxford-TeslatronPT, Cryogenic

 Rear Panel Including standard power connector, two LAN ports, three HDMI ports, four USB 3.0 ports

Materials Characterization

Ferroelectric Analyzer - Specifications

Ferroelectric Measurement	
Arbitrary Waveform Generator	50 MSa/s *
Analog Output	2 MHz, 24 bits
Output Volltage	± 10 V
Output Impedance	10 Ohm
Max Hysteresis Frequency	100 kHz
Min Hysteresis Frequency	0.01 Hz
Min Pulse Width	0.5 µs
Min Rise Time	100 ns
Max Fatigue Frequency	2 MHz
Slew Rate	> 200 V / µs
Max Capacitive Load	1 µF
Max Output Current	± 1 A
Current Range	1 pA ~ 1 A
Function	Dynamic hysteresis loop measurement (DHM), fatigue measurement (FM) retention measurement (RM), imprint measurement (IM) leakage current measurement (LM), capacitance measurement (CVM) piezoelectric measurement (PZM), pulse measurement (PM) pyroelectric measurement (PYM), dielectric measurement (DEM)
Suitable Probe	FEM.DeProbe, FEM.FeProbe

www.multi-field.com | MultiFields Technologies

High-Voltage Amplifier (Optional) - Specifications

	Amplifier - 10k	Amplifier - 1k
Voltage Range	± 10 kV	± 1 KV
Current Range	$0\sim 2\mathrm{mA}$	0 ~ 20 mA
Max Frequency	600 Hz	40 kHz
Input Impedance	10 kOhm	10 kOhm
DC Voltage Gain	1000 V / V	100 V / V
DC Voltage Gain Accuracy	< 0.3 %	< 0.5 %
DC Voltage Bias	< 2 V	< 1 V
Output Noise	< 700 mV rms	< 30 mV rms
Slew Rate	35 V / µs	150 V / µs
Stabilization time for 1% change	< 1 ms	< 30 µs
Inner Capacitance	300 pF	300 pF
Voltage Monitoring	Amplifier - 10k	Amplifier - 1k
Analog Output Scale	1/1000 of the output voltage	1/100 of the output voltage
Noise	< 20 mV p-p	5 mV rms
DC Accuracy	< 2 %	< 2 %

* SPS: Sample per second

Magnetoelectric Measurements7 FEM - Probe

High-voltage ferroelectric probe, compatible with dielectric and pyroelectric measurements

Sample Capsule

Highly insulating Vespel material is used to increase breakdown voltage and ensure stable use under high voltage.

Measurement Cable

High-voltage resistant cables to increase the range of working voltage

Sample Fixture

The sample to be measured can be directly clamped between the two electrodes, with convenient and guick operation.

FEM.FeProbe.30

Key Features

- Temperature: 1.5 ~ 400 K; Magnetic field: 18 T
- FEM probe combining Ferroelectric analyzer provides a integrated ferroelectric measurement solution;
- Dielectric, ferroelectric and pyroelectric measurements for bulk samples can be realized.
- Fatigue and imprint measurement can be realized.
- Optional low-temperature optical fiber for combined optical-electric measurements
- Compatible with QD-PPMS Dynacool, Oxford-TeslatronPT, Cryogenic and Pride-CPMS platforms.

Materials Characterization

Magnetoelectric Measurements7 FEM - Application

MultiFields &Group

Magnetoelectric Measurements 8 Magneto-electric Coupling Measurement

Magneto-electric coupling coefficient measurement system with ultra-high sensitivity

sample. Due to the presence of the magneto-electric coupling effect, sample generates an induced voltage with corresponding frequency, which can be measured by a lock-in amplifier.

The small circuit board for mounting sample is carried by a thermally conductive quartz rod, which does not introduce eddy current and at

There are two types of sample holders: sample parallel to the field

- Magneto-electric coupling coefficient measurement system with ultra-high sensitivity
- Compatible with QD-PPMS Dynacool, Oxford-TeslatronPT, Cryogenic and Pride-CPMS platforms.

Magnetoelectric Measurements 8 Magneto-electric Coupling Measurement - Application

Application (1)—

Materials Characterization

Magneto-electric coupling effect of FeGa/PMN-PT/FeGa heterojunction

Method

A thin film of FeGa layer, a material with magnetostriction effect, is grown on a piezoelectric substrate PMN-PT. This composite magneto-electric coupling material generates an induced voltage under the excitation of a magnetic field, which can be detected by a lock-in amplifier.

Field (Oe)

Application (2)—

Measure de Haas oscillation of Al Magneto-electric Coupling Measurement

• Principle

The aluminum with de Haas oscillation effect is bonded with the piezoelectric material PMN-PT. A extremely slight dimensional oscillation occurs in Al under the magnetic field, which is converted into a piezoelectric voltage on the PMN-PT.

MultiFields &Group

* The Multifields Technologies FMR measurements series are seamlessly compatible with common platforms such as QD-PPMS, Oxford-TeslatronPT, Pride-CPMS, Cryogenic-CFMS and others;

** The above are all recommended configurations. Multifields Technologies provides customization services. If you have special requirements, please contact us.

9. FMR Measurement

Integrating FMR, ST-FMR, Spin Pumping & ISHE into one system and exhibiting extraordinary sensitivity to measure magnetic film.

FMR Measurement System - Specifications

Operating Environment			
Frequency Range	1~20 GHz	1~40 GHz	
Max Power	27 dBm	27 dBm @ < 35 GHz 22 dBm @ 35~40 GHz	
Power Step	0.1 dE	3m	
Frequency resolution	0.01 G	GHz	
Frequency Stability/Accuracy	2 pp	m	
SSB Phase Noise	< -70 dBc/H	z @ 1 kHz	
Nonharmonics	< -60 (dBc	
Harmonics	< -35 dBc (@ 6GHz以上) < -25 dBc (@ 6GHz以下)		
Measurement Function	FMR, ST-FMR, ISHE& Spin pumping		
Auxiliary function	AC modulation current output; Amplitude modulation		
Hight	t 2 U		
Communication	RS23	32	
Software			
Environmental control	Temperature, magnetic field		
Application	FMR, ST-FMR, ISHE&Spin pumping		
Data fitting	Data fitting Lorentzian fitting, Gaussian fitting, Kittel fitting,		
Parameters	$\begin{array}{c} Resonance magnetic field (H_r), Resonance frequency (f_r), Resonance (f_r), Resonance frequency (f_r), Resonance frequency (f_r), Resonance frequency (f_r), Resonance (f_r$		
Sweeping mode	Field Sweeping: RF frequency is k	ept constant and field is swept	

FMR Probe			
Туре	In plane	Out of Plane	
Function	FMR, ST-FMR, ISHE&Spin pumping (thin-film and bulk)		
Frequency Range	0∼20 GHz,	0~40 GHz	
Compatible Platforms	 Multifields cryogenic and magnetic field platform Coldtube PPMS, TeslatronPT, Cryogenic, Pride-CPMS, etc 		
CPW	Through CPW,	6 DC channels	
Sample Area	10 mm x	: 10 mm	
	Max Frequency: 10 kHz		
Helmholtz Coils (Modulation Coils)	Max Current: 100 mA		
	Field/current coefficient 0.08 Oe/ mA		
ST-FMR Probe			
Туре	In plane	Out of Plane	
Function	FMR, ST-FMR, ISHE&Spin p	umping (micro-size device)	
Frequency Range	0∼20 GHz,	0~40 GHz	
Compatible Platforms	Dia.25mm, compatible with third-party cryogenic superconducting magnet platforms; Low-temperature rotating ST-FMR measurement can be realized by u ColdTUBE provided by Multifields Technologies		
CDW	2 channels, open GSG electrodes		
CPW	8 DC channels	6 DC channels	
Sample Area	8 mm x 9 mm	6 mm x 7 mm	

 * If you want to use other instruments for FMR measurement, please consult us.

74

FMR Measurement9.1 FMR Workstation

Integrating FMR, ST-FMR, Spin Pumping & ISHE into one system and exhibiting extraordinary sensitivity to measure magnetic film.

MultiFields[®] FMR Measurement Meter is a very powerful. It can replace expensive VNA to perform the FMR measurements with a high output power up to 27 dBm, which is suitable for high-frequency measurements under extreme conditions (usually large RF loss). Thanks to MultiFields[®] Technologies advanced measurement and integration technology, a multifunctional measurement meter includes FMR, ST-FMR & ISHE & Spin pumping is achieved. It is aimed for testing films with high signal-to-noise ratio that attributes to combine with the (built-in) lock-in amplifier, AC modulated coils and special FMR probe for cryogenic and magnetic platform.

FMR.Meter.20/40

• Modulation Current Output

The modulated current is applied into Helmholtz coils. Introducing an AC small magnetic field during the FMR measurement, together with a lock-in amplifier to read the output signal, a microwave absorption differential spectrum with a high signal-to-noise ratio can be obtained

Key Features

- Max frequency: 20 GHz & 40 GHz;
- Max power output: 27 dBm;
- Extraordinary sensitivity to measure magnetic film with thickness of 1 nm;
- Tunable frequency with resolution of 10 MHz; tunable power with resolution of 0.1 dBm,;
- The FMR workstation with a voltage controlled current source and microwave amplitude modulation can conduct

FMR, ST-FMR, ISHE & Spin-Pumping measurements;

MultiFields

&Group

FMR Measurement 9.1 FMR Measurement - Software

Integrating FMR, ST-FMR, Spin Pumping & ISHE measurements into one software

Thermal transport measurement system - MultiFields Tech.

• Setting Zone

The platform, sample information, instrument selection can be setting in this zone.

Measurement sequence

Selecting the file path to save the data and setting the parameters such as frequency and field.

Data Fitting

Selecting appropriate function/model to fitting the FMR spectra. The extracted parameters are subsequently plotted and fitted to calibrate the key results.

System Status

The temperature, field and chamber status can be display and modified quickly.

Measurement Result

The HCM results will be shown in this figure.

The fitting result of the FMR spectra obtained from the latest measurement. The parameters (resonant frequency and field) are extracted.

3500

Field (Oe)

4000

4500

3000

2500

The fitting result using Kittel equation. Parameters such as effective magnetization, anisotropic field, Landé g-factor and damping coefficient can be obtained.

2000

Field (Oe)

3000

4000

1000

0

Materials Characterization

76

MultiFields &Group

FMR Measurement 9.2 FMR Measurement - Probe

High-frequency measurements on thin-film samples, with sample perpendicular/parallel to magnetic field configurations

extracting the output signal, the microwave absorption differential spectrum with high signal-to-noise ratio can be obtained.

The CPW with 50 Ω -characteristic impedance is fabricated on the Rogers 4003C substrate. In order to improve the signal-to-noise ratio, a compact Helmholtz coil is assembled near the sample to provide a modulation field. The change of microwave absorption induced by the sample placed on the CPW of the MultiField® FMR probe, can be detected by the MF Microwave Core or a lock-in amplifier. Thus, differentiation of microwave absorption signals can be obtained.

materials.

FMR.Probe.30.OP.40G

Key Features

- Max frequency: 20 GHz & 40 GHz;
- Extraordinary sensitivity to measure magnetic film with thickness of 1 nm;
- Two configuration satisfy most measurement requirements;
- Probe working temperature: 1.5 ~ 400 K; Max magnetic field: 18 Tesla;
- Rotating FMR measurement can be conducted using Multifields ColdTUBE
- Compatible with QD-PPMS Dynacool, Oxford-TeslatronPT, Cryogenic and Pride-CPMS platforms.

FMR Measurement 9.2 FMR Measurement - Applications

Materials

78

Application (1)-

• In-plane CoFeB Thin-film

Significant FMR spectra induced by a thin-film sample with structure of CoFeB (7nm) /Ta (5nm) are obtained, it shows a good SNR even the frequency up to 40 GHz. The measurement data can be well fitted to a Lorentzian function consisting of a symmetric and an anti-symmetric Lorentzian component. The figures show the resonance frequency as a function of the resonant field, they are perfectly fitted by the Kittel equation.

Perpendicular CoFeB thin-film

Benefiting from the ultra-high signal-to-noise ratio, 1nm CoFeB thin film with perpendicular anisotropy is well detected by MultiFields® FMR Probe.

MultiFields &Group

79

FMR Measurement 9.3 ST-FMR Measurement - Probe

High-frequency measurements on micro-size devices, with sample perpendicular/parallel to magnetic field configurations

Open-CPW (IP) The sample holder contains 2 open GSG electrodes and 6 DC electrodes, all of which can be directly wire bonded by ultrasonic welding. *CPW and connectors are made of nonmagnetic materials.

requirements.

ST-FMR measurement generally utilizes the microwave amplitude modulation method and the Helmholtz coil is not installed as standard. However it can be installed as an option to meet unique

ST-FMR.Probe.30.IP.40G

For the micro-fabricated magnetic device, spin rectification which originates from magnetoresistance effect is a powerful method to characterize its FMR properties. Especially in the field of spintronics, this method is commonly called spin-torque ferromagnetic resonance (ST-FMR). In addition to characterizing the fundamental magnetic properties, it is very useful to characterize the spin-related properties such as spin-orbit torque efficiency, spin transport etc...

The sample holder contains 2 open GSG electrodes and 6 DC electrodes, all of which can be directly wire bonded by ultrasonic welding.

*CPW and connectors are made of non-magnetic materials.

ST-FMR.Probe.30.OP.40G

Key Features

- Max frequency: 20 GHz & 40 GHz;
- Connect the samples by wire bonding directly on the sample holder (CPW);
- Two configuration satisfy most measurement requirements;

- Probe working temperature: 1.5 ~ 400 K; Max magnetic field: 18 Tesla;
- Rotating FMR measurement can be conducted using Multifields ColdTUBE;
- Compatible with QD-PPMS Dynacool, Oxford-TeslatronPT, Cryogenic and Pride-CPMS platforms.

■ 铁磁共振测试模块 9.3 ST-FMR Measurement - Applications

Application (1)-

ST-FMR measurement of FM / HM device

Sample Information	Si/SiO ₂ /CoFeB (7 nm) /Ta (5 nm)
MultiFields Products	 FMR.Meter.40 ST-FMR.Probe.26P.IP.40G
Electric Meters	QD-PPMS

• ST-FMR of NiFe/Pt

One patterned device with structure of NiFe (5 nm) /Pt (5 nm) are connected with the ST-FMR Probe by wire-bonding (Au wires recommended for higher frequency) . A microwavefrequency (GHz) charge current with a power of 10 dBm and amplitude-modulated (773 Hz) by the lock-in amplifier was applied to the Probe. The rectified voltage was detected by a lock-in amplifier.

Application (2)-

Spin pumping & ISHE measurement of FM / HM device

• Spin-pumping of NiFe/Ta

The patterned device with structure of NiFe (7 nm) /Ta (5nm) are connected with the MultiFields® ST-FMR Probe by wire-bonding (Au wires recommended for higher injection efficiency). An in-plane magnetic field with a fixed direction that cross the sample stripe was swept. The inverse spin Hall voltage can be well fitted to a Lorentzian function.

Spin pumping is a common way to generate a spin current, which can be detected by inverse spin Hall effect (ISHE). Combination of these two effects can measure many important spin-related properties of the materials, such as interfacial spin transport, spin Hall efficiency etc.. Meanwhile, because the spin pumping effect is accompanied with ferromagnetic resonance, the fundamental magnetic properties are also reflected.

Materials Characterization

80

10. Optical Measurement System Confocal Optical Measurement - Overview

All-in-one solution for cryogenic confocal measurement, including confocal scanning microscopy, Raman / fluorescence spectroscopy and magneto-optical Kerr effect measurements

Materials Characterization

Char

- Raman spectroscopy
- Fluorescence Collection
- MOKE Measurement

• Temperature monitor and control

• Microwave/radio frequency cables

- Easy sample-replacement
- · Compatible with PPMS cryostat

MultiFields &Group

Optical Measurement System 10.1 SFM - Raman / Fluorescence Spectroscopy

Integrated Raman/fluorescence measurement module, which can be directly mounted on confocal sample probes

Optical Measurement System 10.1 Raman Spectroscopy - Application

Fluorescence / Raman Module - Specifications

Basic Function	
Filter size	Φ < 25.4 mm, thickness < 6mm
Focused spot size	Φ < 1 um with LTAC objective @ 633 nm
Excitation wavelength	450 nm ~ 700 nm
Fluorescence collection	single-mode or multi-mode fiber
Spectral resolution	0.02 nm
Transmission edges tuning	Rotatable filter mount allows easy tuning of transmission edges

Application (1)-

Raman spectra of several typical samples

Sample Information	Al ₂ O ₃ , MgO, SrTiO ₃ , PMN-PT, Diamond, Si
MultiFields Products	CFM system, CFM.Probe with Raman spectroscopy module
Instruments	532 nm CW excitation; LP03-532RE long-pass filter; PI HRS spectrometer 300 line/mm, Integration time 5s

Optical Measurement System 10.2 SFM - MOKE Measurement

Integrated MOKE measurement module, which can be directly mounted on confocal sample probes

MOKE Module - Specification

Basic Function	
Temperature range	4 K ~ 300 K
Detection noise	<1 mdeg (Kerr angle)
Reflectivity noise	< 0.05% rms
Focused spot size	Φ < 1 um with LTAC objective
Wavelength range	450 nm to 700 nm
Lens option	1. Single aspheric lens 2. High-NA low-temperature objective

Application (1)–

MOKE Hysteresis loop of ferromagnetic thin film

Sample Information Si/SiO2//Ta(3)/CoFeB(1.1)/MgO(2)/Ta(2 nm)

MultiFields Products CFM system, CFM.Probe with MOKE module

Experiment conditions Polar configuration, 633nm CW excitation,

85

&Group

MultiFields

MultiFields &Group

Optical Measurement System 10.2 MOKE - Photoelastic Modulator (PEM)

Compact photoelastic modulator that can be mounted on a confocal module or used as a stand-alone device

Photoelastic Modulator - Specification

基本参数	
Optical Material	Fused Silica
Nominal frequency	50 kHz
Transmission Range	200 nm ~ 2.6 um
Half-Wave Retardation	200 nm ~ 1 um
Clear Aperture (1)	Φ 16mm
Operating frequency	0.1 Hz ~ 200 kHz
Frequency lock resolution	0.03 Hz
Frequency display	1 Hz
Duty cycle, f and 2f	50% 0.001%
Operating temperature	0C ~ 50C
Power consumption	20 W
Weight	100 g
Size	30 mm * 100 mm *10 mm

Application (1)–

Photoelastic Modulator Performance

 Wide-field imaging mode hysteresis with modulationPhase delay is the amplitude of phase oscillations induced by the PEM. Experimentally, the PEM is placed between two crossed polarizers and is oriented 45 degrees with respect to the first polarizer. The 633 nm transmitted laser light is detected by a photo diode and read out by a DAQ. Our PEM exhibits an excellent linear response to the driving voltage up to 200 Vpp.

• Due to the standing-wave nature of the PEM, the phase delay along the wave propagation direction cannot be a constant.Our PEM shows a useful optical aperture of 15 mm within which the delay variation is less than 10%.

Optical Measurement System 10.3 Confocal Optical Probe

Suitable for cryogenic confocal measurement and compatible with the most superconducting magnet platforms

1	Model	CFM.Probe.50Ox	CFM.Probe.26P
2	Function	Compatible with all stackable function modules and suitable for confocal scanning microscopy, confocal fluorescence/Raman spectroscopy, magneto-optical Kerr effect measurements	
3	Work environment	Temperature: 1.4 K ~ 400 K; Pressur	e: $10^5 \sim 10^{-5}$ Pa; Magnetic Field: $0 \sim 18$ Tesla;
4	Flange/Diameter	KF50 / dia-50 mm	KF40 / dia-26 mm & dia-30 mm
5	Position range	x: 3mm; y: 3mm; z: 3mm	x: 2mm; y: 2mm; z: 2mm
6	Position resolution	x: 1um; y: 1um; z: 1um	x: 1um; y: 1um; z: 1um
7	Scan range	x: 3mm; y: 3mm; z: 3mm	x: 2mm; y: 2mm; z: 2mm
8	Scan resolution	x: 1um; y: 1um; z: 1um	x: 1um; y: 1um; z: 1um
9	Bore diameter	25.4 mm(1")	12.7 mm(0.5")
10	Objective lens	Phi < 25.4 mm	Phi < 20 mm,M9 x 0.5 Threaded
11	Sample space	X,Y < 9 mm,Z <9 mm	X,Y < 10 mm,Z <10 mm
12	Electric channel	12	16

 Cage frame with SM1 optical apertures for mounting various optical elements

CFM.Spacer.50

CFM.Spacer.26

MultiFields

&Group

Optical Measurement System 10.4 Low-Temperature Objective - LTAC Series

Optical objective for long-time stable working at low temperature

Infinite Conjugate Low-Temperature Objective (LTAC Series) Specifications

Basic Parameters	
Temperature range	down to 4 K
Pressure range	10-6 mbar ~ 1 bar
Magnetic field range	0 T ~ 14 T
Numerical aperture (NA)	0.85
Focal length (f)	3.1 mm
Working distance (WD)	0.4 mm
Magnification	X60 for 180mm tube lens
Back aperture	Ø 6.15 mm
Anti-reflective coating	400 ~ 1100 nm
Achromatic correction	450 ~ 800 nm
Case Material	Titanium

Application (1)–

Optical Measurement System10.5 Sample Mount

Flexible and convenient sample mounting for combined opticalelectric measurements

Sample Holder

• Sample Base

sample.

A platform on which the sample is

mounted and which can be removed for wire-bonding the

12 pogo-pins are installed to

ensure good electrical contact while maximizing sample space.

 Compact sample holder design for most combined optical-electric measurements.

Sample Holder

A platform on which the sample is mounted and which can be removed for wire-bonding the sample.

Sample Base
 Sample pins are installed to
 ensure good electrical contact

while maximizing sample space.

 Compact sample holder design for most combined optical-electric measurements.

Optical Measurement System 10.6 Nano Motion Units - 16-mm Series

Ultra-precise nano-motion units using in minimum dia.26mm chamber

			Motion Unit	Work Environment	Dimension	Travel Range	Max Load	Dynamic Drive Force	Pins Number	Weight
	And a state of the	-	Scanner16-xy		16 * 16 * 9 mm	30 * 30 um	100 g		4 pins	8 g
	21	-	Scanner16-z	_	16 * 16 * 6 mm	30 um	100 g		2 pins	7 g
21 · · · · · · · · · · · · · · · · · · ·	Beneficial and Benefi	-	Linear16-y	1 K & 18 Tesla & 2m-7 mbar	16 * 16 * 10.5 mm	3 mm	50 g	1.5 N	Drive - 2 pins Sensor - 3 pins	10 g
Materian Prope		-	Linear16-x	-	16 * 16 * 10.5 mm	3 mm	50 g	1.5 N	Drive - 2 pins Sensor - 3 pins	10 g
Nano Motion SetLinear Positioners: 16-mm SeriesLinear Scanners: 16-mm Series	Materia heat		Linear16-z		16 * 16 * 16 mm	3 mm	250 g	3 N	Drive - 4 pins Sensor - 3 pins	12 g

CFM· ϕ 25 - Piezoelectric Motion Units

Optical Measurement System 10.6 Nano Motion Units - 25-mm Series

Ultra-precise nano-motion units suitable for dia.50mm chamber

CFM·Ф50 - Piezoelectric Motion Units

MultiFields &Group

Optical Measurement System 10.6 Nano Motion Units - Controller

Precision motion solutions including instrumentation and software

Positioner Controller MC - NewtonLT.06

aterials Characterizatio

*All data below is measured with 50 ohm wires. Though there is no requirement on wires' conductance, we recommend resistance below 50 ohm.

	Optional Versions ⇒	ArchimedesLT.03
1	Output channels	3 channels
2	Max output voltage	-150 V ~ +150 V
3	Drive frequency range	Max. 1kHz
4	Encoder	Capacity encoder
5	Sensor output voltage	DC 2.5 V
6	Resolution of read voltage	50 uF (18-bit)
7	Connectors	3 channels, BNC
8	Input resistance	10 kOhm
9	Compatible Scanners	Scanner16-xy, Scanner16-z, Scanner25-xy, Scanner25-z,

*All data below is measured with 50 ohm wires. Though there is no requirement on wires' conductance, we recommend resistance below 50 ohm.

	Optional Versions \Rightarrow	MC - NewtonLT.06
1	Output channels	6 channels
2	Max output voltage	-200 V ~ +200 V
3	Drive frequency range	1 ~ 10 kHz
4	Encoder	Resistive encoder
5	Sensor output voltage	DC 2.5 V
6	Resolution of read voltage	50 uF (18-bit)
7	Connectors	6 channels
8	Input resistance	10 kOhm
9	Compatible Positioners	Positioner 16-xy, Positioner 16-z, Positioner 25-xy, Positioner 25-z,

92

Materials Characterization

"Kelvinion Series" Temperature Monitor & Control Products

	Kelvinion Controller	Kelvinion mini Controller	Kelvinion Monitor	Kelvinion Monitor. X
Product Number	MKC-08	MKC-02	MKM-12	MKM-2-X
	8	2	12	2N
Number of Input	8 independent input channels, instead of 3 independent + 5 switching chnnels	2 independent input channels	2 independent input channels	Input can be freely configured to desired number of channels and max. 32 independent monitoring channels.
Control Channel	2	1	/	/
Temperature Monitoring				
Supported sensor		Resistive, diode temper	ature sensor	
User Curves		> 1000		
Lower Limit		300 mK		
Measurement Type		Variable DC current source; Current is aut	omatically tuned upon ranges	
Min Current		100 nA		
Precision with 100-nA Current		1.5 Ω + 50 ppm c	of rdg	
TC Output				
Max Power	100 W + 50 W	100 W	/	/
Heating Range	3	3	/	/
Communication Interface				
LAN		Yes		
Serial Port (USB)		Yes		
GPIB	Yes		Ν	. A.
RS-485	N. A.		Y	/es

General Instruments 11.1 Temperature Controller · Kelvinion mini

Maximum 100 W power output and minimum 300 mK controlled temperature

Temperature Controller · Kelvinion mini

Key Features

- Temperature range of measurement and control down to 300 mK;
- 2 independent monitoring channels with 0.1 mK resolution (24-bit ADC)
- Automatic tuning of the excitation current for higher accuracy and lower heating
- Supports 1000+ user-defined curves;
- 1 PID output channel with 100 W power output;
- Supports 1 relay and 1 analog signal outputs;
- Supports setting temperature ramp rate;
- PID parameters can be switched according to the zone table for different temperature ranges (Zone mode);
- Support USB (serial port), LAN and GPIB communications;
- Automatic protections such as heater short and open detection, setpoint limits are supported.

Diode and resistive sensors (PTC or NTC) have become the preferred solution for temperature monitoring at low temperature and in environments with strong magnetic fields. MultiFields Technologies designed the "Kelvinion mini", a compactly designed cryogenic temperature controller. It consists of 2 independent high-precision temperature monitoring channels and one high-power PID output channel (100 W), as well as one relay output and one analog output channel. The PID closed-loop control, Zone mode, variable temperature rate setting and active over-temperature detection, make the Kelvinion mini cryogenic temperature controller a great tool for low-temperature researches.

94

General Instruments - 1. Kelvinion mini 11.1 Kelvinion mini - Touch-screen Interface

Touch-operated temperature controller interface, guick and easy to use

INPUT A INPUT B 300.000 4.2152 HOME 5 INPUT Sensor: 65.256 Ω Sensor : 1952.5 Ω Sensor Type : Cernox K Sensor Type : Cernox **N** OUTPUT Setpoint : 300.000 P: 50 Ramp : 2.00 Range : High 20 Zone : Zone2 - 20 Loop: INPUTA PID: 23.78 % D: 20 CONFIG Setpoint : 273.15 Relay Loop: OFF

Navigation Bar

Quickly switch between different interfaces

Temperature Display

Display the information of the temperature monitoring channel for a quick view of input temperature, sensor value and sensor type

Parameters Setting

Set the target temperature, PID parameters, temperature ramp rate, output power, relay output and other key parameters here

HOME Interface

This interface displays the current temperature, setpoint of temperature, PID parameters, temperature ramp rate, and output power, etc.

	INPUT A		INPUT B	
HOME	Sensor Type :	PT100	Sensor Type :	PT100
\bigcirc	UNIT :	Kelvin	UNIT :	Kelvin
INPUT	Curve :	12	Curve :	15
	Filter :	On	Filter :	On
OUIPUT	Filter Q :	2.00	Filter Q :	2.00
CONFIG	Filter R :	6.00	Filter R :	6.00

INPUT Interface

This interface allows the user to set the sensor type, display unit, calibration curve and filter parameters for the input channel

OUTPUT Interface

This interface allows the user to set parameters such as PID output, relay output, safe temperature, ZONE mode, etc.

CONFIG Interface

This interface allows the user to set communication modes. GPIB and IP address.

General Instruments - 1. Kelvinion mini

11.1 Kelvinion mini - Specifications

Input												
Number of Input		2										
Isolation		Sensors inputs optically isolated from other circuits										
ADC Resolution		24 bit										
Max update rate		10 reads/s on each input										
User Curves			1000-	+ curves (40	0 points Ma	ax in single o	curve)					
Filter				k	alman Filte	r						
Input Specifications												
Sensor Type		Diode / RTD										
Measurement Type					4 leads							
Excitation		Constant current with current reversal for RTDs										
Supported Sensors		Diodes: Si, GaAlAs; RTDs: 100 Ω & 1000 Ω Pt, Ge, Carbon-Glass, Cernox®, and Rox™										
NTC-Input Range	0 ~10 Ω	0 ~30 Ω	0~100 Ω	0~300 Ω	0 ~1 kΩ	0 ~3 kΩ	0 ~10 kΩ	0 ~30 kΩ	0 ~100 kΩ			
NTC-Excitation Current	1 mA	0.3 mA	0.1 mA	30 µA	10 µA	3 μΑ	1 µA	0.3 µA	0.1 µA			
NTC-Measurement Resolution	0.15 m Ω	0.45 m Ω	1.5 mΩ	4.5 mΩ	15 mΩ +0.02‰ of rdg	45 mΩ +0.02‰ of rdg	150 m Ω +0.02‰ of rdg	450 mΩ +0.02‰ of rdg	1.5 Ω +0.05‰ of rdg			
NTC-Accuracy	8 mΩ	20 mΩ	50 mΩ	120 mΩ	0.5 Ω +0.02‰ of rdg	1.2 Ω +0.02‰ of rdg	5 Ω +0.02‰ of rdg	15 Ω +0.02‰ of rdg	15 Ω +0.05‰ of rdg			
Control												
Control Loops					1							
PID Tuning				Autotune	(one loop a	at a time)						
PID Parameters		P (Gain): 0 to 1000 with 0.01 setting resolution I (Reset): 0 to 1000 with 0.01 setting resolution D(Rate): 0 to 200 % with 0.01% setting resolution Manual output: 0 to 100% with 0.01 setting resolution										
Zone Mode			5 temp	oerature zor	nes with PID	and heater	range					
Setpoint Ramping				0.1 K/	min \sim 20 k	(/min						

Output Loop	25-Ω Heater	50-Ω Heater
Output Type	Variable DC cu	urrent source
DAC Resolution	16	bit
Max. Power	100 W	50 W
Max. Current	2 A	1 A
Voltage Compliance	50	V
Heater Load Range	10 to 7	100 Ω
Output Range	3	}
General		
Relay Output	1	
Analog Output	1, 0~10	V, 16 bit
Communication	Serial port (USB): USB-TypeB GPIB: IEEE488.2, su LAN: TCP/IP, 10M/100M rate,	interface, baud rate: 115200 pport setting address support setting address and pot
Display	5.0 inch TFT touch-scree	n with 1280 x 720 pixels
Safety Limit	Short & open cii Setpoint & temperat	rcuit protection ture limit protection
Size	215(W) * 88.9(H) * 3	58(L) (unit: mm)

General Instruments 11.2 Temperature Controller · Kelvinion

8 independent temperature monitoring channels & 2 temperature control channels, max. power 100 + 50 W

- 8independent monitoring channels with 0.1 mK resolution (24-bit ADC)
- Automatic tuning of the excitation current for higher accuracy and lower heating;
- Supports 1000+ user-defined curves;
- 2 PID output channel with 100 W power output;
- Supports 2 relay and 2 analog signal outputs;
- Supports setting temperature ramp rate;

are supported.

- PID parameters can be switched according to the zone table for different temperature ranges (Zone mode);
- Support USB (serial port), LAN and GPIB communications;
- Automatic protections such as heater short and open detection, setpoint limits

MultiFields Technologies designed the "Kelvinion", a powerful cryogenic temperature controller. It consists of 8 independent high-precision temperature monitoring channels and 2 high-power PID output channel (100 + 50 W), as well as 2 relay output and 2 analog output channel. The PID closed-loop control, Zone mode, variable temperature rate setting and active over-temperature detection, make the Kelvinion mini cryogenic temperature controller a great tool for lowtemperature researches.

MultiFields

多场科技

General Instruments - 2. Kelvinion 11.2 Kelvinion - Touch-screen Interface

Α Cernox

С

Cernox

Ε

Cernox

G

Cernox

OUT

1

InputA

77.125 К

0.000 K

0.000 K

SETP : 300.000K

OUT: 10.300%

H Diode

OUT

2 InputB

Touch-operated temperature controller interface, guick and easy to use

HOME

5

INPUT

OUTPUT

-

CONFIG

Quickly switch between different interfaces 300.000 K B 200.000 K D Cernox 4.232 K Temperature Display Display the temperatures and sensor types of 8 channels. Click to enter the INPUT interface of the selected channel. 273.152 К **F**

Control Display

Navigation Bar

Display the setpoint, power output and input temperature control channel. Click to enter the OUTPUT interface of the selected control channel

	InputA										
HOME	< 3	00 . 56.5	000K	` >							
	Sensor Type :	Cernox	UNIT :	Kelvin							
OUTPUT	Curve :	0	Filter :	ON							
*	Filter Q :	2.00	Filter R :	6.00							
CONFIG	Heater Limit :	360.000									

INPUT Interface

This interface displays the temperature and sensor value, allows the user to set the sensor type, display unit, calibration curve, filter parameters and heater limit for the input channel.

OUTPUT Interface

265.254 K

SETP : 200.000K M

OUT: 22.510%

This interface allows the user to set parameters such as PID output, relay output, safe temperature, ZONE mode, etc.. Users can also enter the PID autotune interface.

CONFIG Interface

This interface allows the user to set communication modes, GPIB and IP address.

General Instruments- 2. Kelvinion 11.2 Kelvinion - Specifications

Input												
Number of Input					8							
Isolation		Sensors inputs optically isolated from other circuits										
ADC Resolution		24 bit										
Max update rate		10 reads/s on each input										
User Curves			1000-	+ curves (40	0 points Ma	ix in single d	curve)					
Filter				k	alman Filter	~						
Input Specifications												
Sensor Type				[Diode / RTD							
Measurement Type		4 leads										
Excitation		Constant current with current reversal for RTDs										
Supported Sensors		Diodes: Si, GaAlAs; RTDs: 100 Ω & 1000 Ω Pt, Ge, Carbon-Glass, Cernox®, and Rox™										
NTC-Input Range	0 ~10 Ω	0 ~30 Ω	0 ~100 Ω	0~300 Ω	0 ~1 kΩ	0 ~3 kΩ	0 ~10 kΩ	0 ~30 kΩ	0 ~100 kΩ			
NTC-Excitation Current	1 mA	0.3 mA	0.1 mA	30 µA	10 µA	3 µA	1 µA	0.3 µA	0.1 µA			
NTC-Measurement Resolution	0.15 mΩ	0.45 mΩ	1.5 mΩ	4.5 mΩ	15 mΩ +0.02‰ of rdg	45 mΩ +0.02‰ of rdg	150 mΩ +0.02‰ of rdg	450 mΩ +0.02‰ of rdg	1.5 Ω +0.05‰ of rdg			
NTC-Accuracy	8 mΩ	20 m Ω	50 m Ω	120 mΩ	0.5 Ω +0.02‰ of rdg	1.2 Ω +0.02‰ of rdg	5 Ω +0.02‰ of rdg	15 Ω +0.02‰ of rdg	15 Ω +0.05‰ of rdg			
Control												
Control Loops					2							
PID Tuning				Autotune	(one loop a	at a time)						
PID Parameters		P (Gain): 0 to 1000 with 0.01 setting resolution I (Reset): 0 to 1000 with 0.01 setting resolution D(Rate): 0 to 200 % with 0.01% setting resolution Manual output: 0 to 100% with 0.01 setting resolution										
Zone Mode			5 temp	perature zor	ies with PID	and heater	range					
Setpoint Ramping				0.1 K/	'min \sim 20 K	./min						

Output Loop 1	25-Ω Heater	50-Ω Heater
Output Type	Variable DC c	urrent source
DAC Resolution	16	bit
Max. Power	100 W	50 W
Max. Current	2 A	1 A
Voltage Compliance	50	V
Heater Load Range	10 to 7	00 Ω
Output Range	3	
Output Loop 2	25-Ω Heater	50-Ω Heater
Output Type	Variable DC c	urrent source
DAC Resolution	16	bit
Max. Power	50 W	25 W
Max. Current	1.4 A	1 A
Voltage Compliance	50	V
Heater Load Range	10 to 7	00 Ω
Output Range	3	
General		
Relay Output	1	
Analog Output	1, 0~10	V, 16 bit
Communication	Serial port (USB): USB-TypeB GPIB: IEEE488.2, su LAN: TCP/IP, 10M/100M rate,	interface, baud rate: 115200 pport setting address support setting address and pot
Display	5.0 inch TFT touch-scree	n with 1280 x 720 pixels
Storage	16 M, PC driver-	free connection
Safety Limit	Short & open cir Setpoint & temperat	rcuit protection rure limit protection
Size	430(W) * 88.9(H) * 3	58(L) (unit: mm)

General Instruments 11.2 PC Software - Kelvinion Series- Controller

Provide dedicated operating software, complete communication commands and LabVIEW drivers

PC Software

Kelvinion temperature controllers are supported by a computer software, which can configure all parameters of the instrument and support functions such as calibration curve editing and uploading. Users can realize remote control of Kelvinion. In addition, a set of communication commands and LabVIEWTM drivers are available to help professional users quickly integrate Kelvinion into their systems.

Home Control Zone Graph Curve Config EXIT A Kelvinion Series Product C P 1.00 Image: Setpoint 50.00 Image: Setpoint Range + @ Image: Setpoint Image: Setpoint I 0.00 Image: Setpoint 0.00 Image: Setpoint Image: Setpoint Image: Setpoint	Home Control Zon	ne Graph (Curve Cor	^{nfig}	Data	Kelvinion S	eries Product	Home Control Zone Graph Curve Config EXIT A Kelvinion Series Product
D 2.0 C Range OFF C 0.6-	Zone Button	Zone I	Boundary	Ρ	1	D	Range	260- 240-
Output 50.00 04-	₽ Edit	Zone 1	150.00	12.00	5.00	0.00	HIGH	220-
	Luit	Zone 2	35.00	15.00	8.00	0.00	HIGH	2 180- 5 160-
	🗘 Clear	Zone 3	4.00	20.00	10.00	0.00	MID	20 140- 120-
Cycle 0.20 😧 Mode Auto 😧 -0.4-	Save	Zone 4	0.00	50.00	20.00	0.00	LOW	100-
Mode HO (2) PID 150.00 (2) -0.6-		Zone 5	0.00	0.00	0.00	0.00	OFF	60-
Limit 350.00 🚱 Heater 25 🚱 -0.8-	<u> </u>					0		20-
Relay PID 0 2 4 6 Time(s) Time(s) Time(s) Time(s) Time(s)								0-1 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 Time

Control Interface

This interface allows user to set the temperature control parameters of the controller and display them in the figure on the right.

Zone Interface

In this interface, users can set the control parameters under different ZONE, and can save the above parameters locally or import them into a new controller.

Graph Interface

Historical temperature profiles are displayed on this interface and the data can be saved locally.

100

MultiFields

多场科技

General Instruments - 3. Kelvinion Monitor 11.3 Temperature Monitor · Kelvinion Monitor

Standard 12 independent monitoring channels. Support 2-32 independent monitoring channels.

Temperature Monitor · Kelvinion Monitor Temperature Monitor · Kelvinion Monitor. X

Key Features

- Temperature range of measurement and control down to 300 mK with 0.1 mK resolution (24-bit ADC)
- Standard 12 independent monitoring channels. Support 2-32 independent monitoring channels;
- Each channel is isolated from the other, with a sampling rate of 10 SPS.
- Support synchronous sampling function, the synchronization time is better than 100us
- Automatic tuning of the excitation current for higher accuracy and lower heating;
- Supports 1000+ user-defined curves;
- Support USB (serial port), LAN and RS485 communications;

In large cryogenic installations, it is necessary to monitor the temperatures at several positions simultaneously. To meet the multi-channel temperature monitoring requirement, MultiFields Technologies designed the "Kelvinion Monitor". It consists of 12 independent high-precision temperature monitoring channels with 10 SPS sampling rate and synchronous sampling function. The unique design allows us to freely extend the number of monitoring channel from 2 to 32. It is also compatible with the standard cabinets.

MultiFields 多场科技

Monito

General Instruments - 3. Kelvinion Monitor 11.3 Kelvinion Monitor - Interface and Control

Flexible to increase or decrease monitoring channels

11.3 Kelvinion Monitor - Specifications

Temperature Monitor · Kelvinion Monitor - Specifications

Input												
Number of Input	8											
Isolation		Sensors inputs optically isolated from other circuits										
ADC Resolution					24 bit							
Max update rate				10 read	ds/s on eact	n input						
User Curves			1000	+ curves (40	0 points Ma	ax in single c	curve)					
Filter				K	alman Filte	r						
Synchronization Time					< 100 µs							
Input Specifications												
Sensor Type				[Diode / RTE)						
Measurement Type		4 leads										
Excitation			Const	ant current	with current	reversal for	RTDs					
Supported Sensors		RTD)s: 100 Ω &	Dioc 1000 Ω Pt, 0	des: Si, GaA Ge, Carbon-	IAs; Glass, Cern	ox®, and Ro	DX™				
NTC-Input Range	0 ~10 Ω	0 ~30 Ω	0~100 Ω	0 ~300 Ω	0 ~1 kΩ	0 ~3 kΩ	0 ~10 kΩ	0 ~30 kΩ	0~100 kΩ			
NTC-Excitation Current	1 mA	0.3 mA	0.1 mA	30 µA	10 µA	3 μΑ	1 µA	0.3 µA	0.1 µA			
NTC-Measurement Resolution	0.15 mΩ	0.45 mΩ	1.5 mΩ	4.5 mΩ	15 mΩ +0.02‰ of rdg	45 mΩ +0.02‰ of rdg	150 mΩ +0.02‰ of rdg	450 mΩ +0.02‰ of rdg	1.5 Ω +0.05‰ of rdg			
NTC-Accuracy	8 mΩ	20 mΩ	50 mΩ	120 m Ω	0.5 Ω +0.02‰ of rdg	1.2 Ω +0.02‰ of rdg	5 Ω +0.02‰ of rdg	15 Ω +0.02‰ of rdg	15 Ω +0.05‰ of rdg			
General												
Communication	RS-	Serial port (USB): USB-TypeB interface, baud rate: 115200; LAN: TCP/IP, 10M/100M rate, support setting address and pot; RS-485: With isolation protection function; Isolation voltage 2500 VDC, 9600 baud rate										
Display			2	2.4 inch scre	en with 320	x 240 pixels	S					
Size			Host: Subs:	79(W) * 88 22.5(W) * 8	3.9(H) * 135 8.9(H) * 135	(L) (unit: m ō(L) (unit:	nm) mm)					

General Instruments - 3. Kelvinion Monitor 11.3 PC Software - Kelvinion Series - Monitor

Provide dedicated operating software, complete communication commands and LabVIEW drivers

PC Software

Kelvinion temperature controllers are supported by a computer software, which can configure all parameters of the instrument and support functions such as calibration curve editing and uploading. Users can realize remote control of Kelvinion. In addition, a set of communication commands and LabVIEWTM drivers are available to help professional users quickly integrate Kelvinion into their systems.

Home - Device Interface

Display the information of the temperature monitoring channel for a quick view of input temperature, sensor value and sensor type

Graph Interface

Historical temperature profiles are displayed on this interface and the data can be saved locally.

多场科技

MultiFields Technologies Co., Ltd.

5th Floor, 2# Building Industry Park of Nonferrous Metal--Research Institute Huairou Science City Huairou District, Beijing, China

www.multi-field.com info@multi-field.com +86 18610278097 多场低温科技(北京)有限公司

北京市 怀柔区科学城

有色金属研究院园区2号楼5层

